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Tutorial Outline: 

Introduction and Background 
Architecture for Active Networks 

Execution Environments (EEs) 
Node Operating System (NodeOS) 
Security Architecture 

Applications 
Interoperability 
The Future 



1. Introduction 

The Traditional Model: Store & Forward 
Why do we need Active Networks? 
New Model: Store, Compute & Forward 
Roles for Languages, O.S. and Algs. 
Nodes, Protocols and Networks 



Virtual Infrastructures, e.g., IP 

IP is a network interoperability layer  
Interoperable through minimality: 

IP 

TCP 
UDP 

NFS HTTP 
WWW 

ATM 
Ether 

SONET 

Overlays (running at hosts) 

Virtual Network Infrastructure 
(runs globally) 

 
Subnetworks (run IP locally) 

Packet Format, 
Addressing 



IP Routing Infrastructure 

Model: Store and Forward 

1. Dequeue Packet from Input Port 
2. Determine “best” Output Port 
3. Queue Packet on Output Port 

Input 
Packet 

Output 
Packet 



 
“Passive” Networking 

Smart hosts on the edges 
Passive switches in the center 

 



Challenges as Internet scales 

Hope Reality

“Adding New Protocols is
EASY”

RFC 1112, 1989
Ubiquitous Multicast, 2009? 

“End to End QoS” ISSSL…

“All Intelligence at the Hosts” Not source routed

“IP can run over two cans
and a string”

And TCP can’t figure out if the
string is congested or fraying…



RFC Pages by Year 1982-1997 

0
1000
2000
3000
4000
5000

And 13797 pages draft in ‘97 (9/16/97)…. 



Active Networking Nodes 

Store, COMPUTE and Forward! 

Input 
Packet 

Switchlet 

Output 
Packet 



Active Network Model 
Packets (“switchlets”) can change the 

behavior of the switches “on-the-fly” 
In-band active packets 
Out-of-band active extensions 



Result: ‘‘Active’’ Networks 

Accelerate service creation with programmable 
network infrastructure 

Programmable on per-user or per-packet basis 
Is this just another O.S. problem? 
See Tennenhouse, Smith, et al. survey in       

IEEE Network Magazine, Jan. 1997 



Why Do This? 

Faster response to problems and possibilities 
in network 

Per-user protocols 
Allows experimentation 
Accelerates network evolution 
Examples 
Web proxy caching 
Auctions 
Reliable multicast 
Congestion control 



Activations (Less radical)  
Network control and measurement 
flow and congestion control (self payment) 
measurement (at intermediate nodes) 
real-time self-expiring packets 

Break “invisibility” of data link layer! 
Sanity, e.g., Anti-spam filter 
Inverse multicasting 
 



 Activations (More Radical): 

Self-Paying Information Transport 
Routing by economics; policy with $$$ 

Use Multiple Routes other than failover 
Route BONDing (striping) 
Diversity routing 
Routing is not infrastructure! 

Sensor fusion, DNS & WWW caches, etc. 
Address latency with Architecture 



Questions for Active Networking 

How to do it 
Where (not whether) to do it: 
under IP 
IP 
over IP 
management plane, applications, etc. 

Can it be deployed? 



2. What’s known? 

Experience with user programmability 
Process Migration 
SPIN and Exokernel 
SOFTNET 



User Programmability 

EMACS uses LISP for extensibility 
MACRO packages pervasive 
LaTeX, troff, MS-Word 

Metamail - LISP extensions 
PostScript printers 



Process Migration 

Move running code from place to place 
- load balancing / large data 

Investigated heavily in late 1980s 
Machine heterogeneity and state major 

challenges 
These challenges were addressed by 

mobile code systems and languages such 
as Java. 



The U. Washington SPIN O.S. 

Dynamically modifiable O.S. 
Programs loaded in “on-the-fly” 
Programmed in Modula-3 
High performance, sandbox-style 

security, safety from language 
Many lessons for active networking 



The MIT Exokernel 

User-specialized operating system 
Minimal required resources 
Other elements implemented as 

privileged or unprivileged libraries 
Many networking applications 

- DPF 
- PAN 



U. Linkoping SOFTNET system 

Mid-1980s (thus really first A.N.) 
Radio nodes with processors (6502s) 

and multi-tasking Forth operating 
system 

Demonstrated operational dynamic 
network architecture - Forth loaded on 
the fly 

Lessons in architecture and security 



3. Active Net Architecture 

User Programs 
Execution Environments (EEs) 
Node Operating System (NodeOS) 
Security Architecture 



“Active Network Architecture” 
Application Application Application 

Execution 
Environment 
(e.g., ALIEN) 

Execution 
Environment 
(e.g., ANTS) 

Node Operating System 
(e.g., Nemesis, Scout, Linux, NT?) 



PLAN 

ALIEN/Caml/OS 

AEGIS Static  
Integrity 
Checks 

Dynamic 
Integrity 
Checks  

Node-Node 
Authentication 

Recovery 

Example: SwitchWare Architecture 

ALIEN 
Library 

PLAN 
Packet 

PLAN 
Packet 

Caml 
Switchlet 

Caml 
Switchlet 



4. Execution Environments 

BBN Smartpackets 
MIT ANTS 
Penn PLAN 
Columbia Netscript 
Penn ALIEN 

- Detailed Case Study 



The Design Space 

Usability vs. Flexibility vs. Security vs. 
Performance 

A General-Purpose Language gets the 
first two for free; other two are hard! 

Domain-specific Languages may achieve 
different tradeoffs 



Programming Language Features 

Strong typing 
Garbage collection 
Module thinning 
Dynamic loading 
Platform independent representation of 

switchlets 
Performance 
Also desire threads and static typing 



Caml and Java: Features 

Caml Java
Dynamic Loading X X
GC X X
strong typing X X
array bounds X X
static typing X ?
compact format X X
arch independent X X
reasoning X
low level access X
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BBN Smart Packets 

Domain-specific language 
- Source code - Sprocket 
- Comiples to stack-based CISC - Spanner 

Designed for network management 
- Spanner runtime accesses MIBs 

Spanner is a compact representation 
- fits in an Ethernet frame 



MIT Active Network Transport 
System (ANTS) 

Wetherall, et al., OpenArch ‘97 
Largely a library of Java 
Uses the Java JVM runtime 
Packets carry 1 function each 
Packets “drag” code after them into a 

soft-state-like function cache so that 
subsequent packets run fast 



Packet Language for Active 
Networks (PLAN) 

 Hicks, Kakkar, Moore, Gunter, Nettles 
Capsule-based approach 
CAML runtime 
 Highly-restricted domain specific 

language (a safe “glue” language, like 
the UNIX shell), extensible via ALIEN 

Active extensions do restricted things 



Netscript 

Yemini and daSilva at Columbia 
Domain-specific 

- Network Management 
- Virtual network configuration 

Implemented in Java 
Creates dataflow mesh 
Used for dynamic firewall configuration 



The ALIEN Active Loader 

D. Scott Alexander 
CAML runtime 
CAML capsules restricted via module 

thinning 
Digitally-signed certificates for remote 

accesses to resources 
Will use for detailed case study 

 



The ALIEN Approach 

Achieved by restricting a general computing 
model 

Realized in ALIEN, an active loader for Caml 
- General computing model 
- Interface to OS 
- Interface to active code 

Only privileged portions of the system can 
directly access shared resources 



ALIEN in an Active Element 

Three layer architecture 

switchlets 

Loader 

Core Switchlet 

libraries 

Runtime (Caml) 
OS (Linux) 



As small as possible 
Fixed (but overlays can mask) 
Mechanism rather than policy 
Basis of privilege 
Interface to operating system 

Core Switchlet 

libraries 

ALIEN Loader 

Loader 



Policy and mechanism 
Privileged 
Loadable (conceptually, Caml does not allow) 
Interface to switchlets 

Loader 

libraries 

The Core Switchlet 

Core Switchlet 



Less well-defined because of ease of change 
IP, UDP, crypto routines, checksums 
Unprivileged 

Loader 

Core Switchlet 

libraries 

ALIEN Libraries 



Locating Functionality 

Prefer libraries 
Isolate privileged functionality 
Policy is managed in Core Switchlet 
Expand Loader only to allow Core Switchlet 

startup 



Implementation of Switchlets 

Active Extensions 
Loaded from disk or network (TFTP) 
We use queues for communication 
Could use upcalls... 

Security? 
…or blocking downcalls 

Active Packets 
ANEP encapsulated (over UDP or link layer) 
Can use SANE for security 
Linker/ procedure call for communications 



Active Packets in ALIEN 

If ANEP header indicates ALIEN 
SANE processing as part of ANEP 
Code portion is loaded 
func is called with code, data, and func name as 

arguments 

ANEP 
header/ 
SANE 
auth 

code 
portion 

link 
layer 

header 

data 
portion 

func 
name 



Experimental Setup 

DEC Alpha 21164SX @ 533Mhz 
128 MB ECC synchronous DRAM 
L1 cache: 16KB instruction; 8KB data 
L2 cache: 1MB synchronous pipeline burst 
100Mb Ethernet: DEC DS21140 “Tulip” 

Full-duplex, cross-over cable 
Timing via rpcc instruction (cycle counter) 

Cost 2 cycles to time C code 
Cost 1.5 - 2 µsec for Caml code 

Presenter
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saneping Performance 
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Overall Breakdown of Costs 

information 
gathering 

10% 

marshaling 
16% 

authentication 
25% 

transmission 
related 

4% 

Caml 
overhead 

20% 

kernel/wire 
26% 



Major Costs 

Kernel/Wire (26%, 3078 µs) 
Kernel time + transmission time 
To avoid 

Reduce size of packet 
Reduce or avoid kernel boundary crossing cost 

Authentication (25%, 2910 µs) 
Mostly cost of performing SHA-1 (4 times) 
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Controllable Costs 

Caml overhead (41%, 2296 µs) 
Cost to link byte code file into ALIEN 

Marshaling (32%, 1816 µs) 
Difficulty comes from maintaining type safety 
Could improve with limited version of Marshal 
Could improve further with SANE? 

Sending hosts signs any valid object not created 
with limited version of Marshal 

Cost?  Benefit? 

Presenter
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Controllable Costs (con’t) 

Information gathering (19%, 1094 µs) 
Finding a route,  finding an addr, reading 

byte code file 
Cost of reading byte code is 1043 µs 

Transmission related costs (8%, 425 µs) 
Call to Udp.sendto_udp 
Call to queue up packet for receiver 
Might be reduced by upcalls 
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Cryptography is Expensive 

Implemented in C because too slow in 
Caml 

Times to hash 4MB of data 

bytecode native
Caml Int32 86.45s 61.99s
Caml int 36.03s  2.48s
C  0.33s



Breakdown of Caml Costs 

info gathering 
19% 

marshaling 
32% 

transmission 
related 

8% 

Caml 
overhead 

41% 



Caml Overheads 
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Caml Overheads (con’t) 

Reallocate global_data every 12 - 13 pings 
Cost of “intro” rises due to increase in 

symbol table size 
Jumps in “intro” due to hash table resizing 
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Other Runtime Issues 

Transmitted ping program is 2454 bytes 
Loading a module from Linux buffer cache 

costs 3ms 
We added an extension to load from memory 

Scheduler costs between 100µs and 250µs 
If any thread desires I/O select() is called 
We structure our code to avoid (some) calls to 

the scheduler to get these results 
We will need to use a different scheduler 

Presenter
Presentation Notes
B12



Application 1 Application 3 

Execution 
Environment 
(e.g., ALIEN) 

Execution 
Environment 
(e.g., ANTS) 

Node Operating System #1 
(e.g., Nemesis, Linux) 

Execution 
Environment 
(e.g., ALIEN) 

Execution 
Environment 
(e.g., ANTS) 

Node Operating System #2 
(e.g.,Scout, NT) 

Application 2 Application 3 Application 1 Application 4 

Transmission 
Facilities 

Internode Interoperation 



EE Deployment Challenges 

EE interoperability  
Will we need an EE-interoperability EE? 
Or will we be limited to a subset of nodes? 
Difficulties with P.L.-based security 

Local Autonomy vs. Global behavior 
Varying capabilities of NodeOS? 



5. Node Operating System 

Aggregation and Flows 
Resource Management and QoS 



Need to control multiplexing 

E.g., assign L3 bandwidth 66%/33% 

L1: 66% 
L2: 33% 

L1 

L3 L2 



End-to-End Activations 

 Resource Management Challenges 

 
 

EE #1 EE #2 
EE #2 EE #1 

 NodeOS 
Send Buffers 

NodeOS 
Receive Buffers 

ANEP/IP ANEP/IP ANEP/IP 

multiplexing 

ANEP/IP 



Fair Queuing Code for an A.N.E. 

Discriminates between “flows” 
Separate queue for each current flow 
Queues are serviced “round-robin” 

Transmission Queue 

Arrival Queues 

Round- 
Robin 



Research/Engineering Issues 

What is the relationship between the 
EE and the NodeOS? 
What can A.N. applications request? 
How does NodeOS mux EEs? 

What is the language used for loading 
disciplines? 
Per-EE (PLAN code generates Netscript?) 
RSVP interpreted by A.N.E.? 

 



6. Security 

Models for Security and Safety 
Policy Enforcement 
The Secure Active Network 

Environment (SANE) 
AEGIS Secure Bootstrap 
Local Policy Extension 



Security and Safety 

Safety: Good guys can make mistakes... 
Security: Bad guys can program too... 
Network Infrastructure is shared 

it MUST work (telephony as example) 
Can we get FLEXIBILITY and SECURITY? 



Challenges: Safety & Security 

Safety: Accidents; Security: Malice 
Specification of goal (@30,000 feet!): 

Right Information to 
Right Place at 
Right Time 

Insecurity: Deviation from goal 
e.g., information to wrong place 



Right information/Right place 

Requires identifying information units 
Requires identifying places 

e.g., locations, personnel, etc. 
Requires security association 

e.g., per-place password encrypts info. 
deny information to other places 
cryptographic protocols: good progress 



Right Time (the tricky one) 

Late information may be useless 
Basis of denial of service attacks 
Requires identifying real times 
Languages have no time semantics 

gettimeofday() in C/Unix world 
is ML better? (Dannenberg’s Arctic?) 



How do we control programs? 

Safety & Security: P.L., O.S. or hybrid? 

O.S. 
Kernel, 
e.g., Linux 

Device  
Driver 

Device 
Driver 

Programming Language 
        Environment 



Example: Denial of Service 

Easy to protect server hosts 
Resource domains, interrupt masking, 

firewall shielding on host itself 
But service is unprotected between 

client and server site 
This problem must be solved with 

network-embedded functionality 



Denial of Service attack 

Cross traffic in an Internet 

TCP 
Host 

Evil 
UDP 

TCP 
Host 

? 
? 



Secure Active Network Environment 

Demonstrates active packet programming 
Extends ALIEN security model into the 

network with cryptography 
Guarantees no corrupted component 
Allows recovery of failed components 
Enables trust relationships between nodes 
Allows authentication of switchlets 



SANE Security Model 

Only process packets from trusted hosts 



Secure Active Network 
Element (SANE) 

“Trust, but Verify” (U.S. Nuclear 
Policy..) 

PLAN 

Caml/O.S. 

AEGIS Static Integrity 
Checks (Done 
Once) 

Dynamic Integrity 
Checks (Maybe per- 
packet/SwitchLet?) 

Node-Node 
Authentication 

Recovery 

http://www.cis.upenn.edu/~waa 
http://www.cis.upenn.edu/~angelos 



BIOS 2 
Level 1 

AEGIS Architecture 

BIOS 2 BIOS 2 
Expansion 

ROMs 
Level 2 

Boot 
Block 

Level 3 

Active 
Network Env. Level 4 

BIOS 1 Netcard Level 0 

Trusted 
Repository 

Network 



Approach 

Integrity and Trust Must be 
“Grounded” at the Lowest Possible 
Point. 

Trust Base Case (n) 

Extended 
Trust Level (n+1) 

Layer Crossing 
Protected by 

Public Key Crypto 

Chaining Layered Integrity Checks 
(CLIC) Extends Trust Beyond the Base 
Case. 



Mutually Suspicious 
Nodes 

 
Nodes Authenticate 

their Neighbors 
Establish Trust 

Relations with Peers 
(PolicyMaker?) 

Use Trust Relations 
to Solve Existing 
Problems (eg. 
Routing) 

Optimize 
Authentication 

Active 
Network 

A1 

A2 

A3 

A4 B1 

B2 

B3 



Node to Node Authentication 
 

Once at Boot Time, Periodically 
Thereafter (Crypto “heartbeat”) 

Modified Station-to-Station Protocol 
(Well Known and Understood) 

Key Can be Used to Authenticate on a 
Hop-by-Hop Basis, Encrypt Sensitive 
Information 

Make Traffic Analysis Hard 



7. Applications 

Active Reliable Multicast 
Active Bridging 
Protocol Boosters 
Active Congestion Control (ACC) 
Active Router Control (ARC) 



Active Reliable Multicast (ARM) 

Reliable Multicast plagued by “ACK 
implosion” when an error occurs 

Retransmission expensive 
In MIT’s ARM, Active Elements are 

embedded in the multicast tree (not all 
tree nodes need be active for ARM to 
work) 



ARM techniques 

Active 
Router 

1. Duplicate NACKs 
2. Best-Effort Multicast 
    data Caching 
3. Local retransmission 

Multicast 
Data 

NACKs 
Local  
retransmission 



ARM Advantages 

Simulation shows performance better 
than Scalable Reliable Multicast (SRM) 

Duplicate NACK suppression (as in 
Bashkow and Sullivan’s ChoPP) reduces 
load further up the multicast tree 

Cache and local retransmit reduce 
bandwidth needs 



Active Bridging (Scott Alexander, 
et al. Proc. SIGCOMM 1997)  

 

Linux 
Kernel Input 

 NIC 
Output 
  NIC 

LAN #1 LAN #2 Frame Frame 

Caml 
System Loaded 

modules 

. . 

http://oilhead.cis.upenn.edu/~salex 



Active Bridge Module Architecture 

Control Switchlet 

DEC 

Learning Algorithm 

Buffered Repeater 

ALIEN 

IEEE 



Automatic Protocol Transition  

Demonstrates dynamic reconfiguration 
Old protocol 
New protocol 
Control Switchlet 



Active Bridge Performance 

58 - 60 Mbps vs. 86 Mbps for C buffered 
repeater (over 100Mbps Ethernet) 
Threads and scheduler 
(Kernel crossings) 

Protocol transition < 0.1 sec 
vs. 30 sec start up time for IEEE algorithm 

2*PPro 
300Mhz 
256MB 

2*PPro 
300Mhz 
256MB 

2*PPro 
300Mhz 
256MB 



Analysis - ttcp throughput 

85.74Mbps 136 µs per packet 
57.73Mbps 202 µs per packet 
 66 µs per packet is cost of Bridge 
54 µs is Bridge processing 
 12 µs “data formatting” (C to/from 

Caml) 
Language runtime imposed overheads 



Lessons from Bridge 

Performance at ca. LAN speeds 
Incremental Loads: 

Buffered Repeater 
Self-Learning 
Spanning Tree Algs. (DEC & IEEE) 
Automatic STA Transition in <0.1sec 
Recovery from module failure 

http://oilhead.cis.upenn.edu/~salex 



Protocol Boosters 

Protocol Elements added ‘‘as-needed’’ 
Example of “optimistic” design method 
Useful to maintain common case 

Application 

Booster DeBooster 

Application 

Host A Host B 

Network 
Element 

Boosted Subnet 



Examples 

Implemented over IP on FreeBSD 
Encryption Booster 
Compression Booster 

FEC Booster at Bellcore 
Hardware Support: The P4* 

 
*see http://www.cis.upenn.edu/~boosters/boosters.html 



Performance Potential: 

Thruput: TCP, TCP/FEC, Hybrid 

Bit Error Rate 

T 
h 
r 
u 
p 
u 
t 

* 

* 
* 
 * * 

  *     * 
              * 
                    *   * 
                               



Active Router Control (ARC) 

IP Router/Forwarders co-located with 
Active Elements: 

IP 

IP 
IP 

IP 

Active 
Element 

LAN 

Forwarding 
Tables 

Routing Policies and 
Decisions (and New 
Services)  



Implementation of ARC, I 

Early experiment by Bill Marcus 
Bellcore protocol booster kernel on P.C. 
Control Cisco 7000 through policy based 

routing (PBR) interface 
Current work by Osman Ertugay at Penn 

PLAN program on P.C. controlling Cisco 
3600 through Policy-Based Rting interface 

Working with 3Com on CB 3500 platform 



Implementation of ARC, II 

Project by Columbia & Bay/Nortel 
Netscript on Accelar 

Programmable gateway: 
Router, firewall, analyzer/shaper, caching 

server… (boundary smarts!) 
Investigate SW architecture and HW 

support 



ARC becoming possible in COTS 

 

Input 
Port #1 

Input  
Port #2 

Output 
Port #2 

Input 
Port #3 

Output 
Port #1 

Output 
Port #3 

Active Network 
Element (e.g., JVM) 



U. Wash Detour Architecture: 
Cooperating Active Routers 

 
 
 
 
 

D 

D 

D 

D D C C 

C 

C 

C C 

C C 
C 

D 

D C 

D 

Detour nodes at network borders 

Packets routed 
along tunnels 

Support for non-
Detour networks 

Nodes aggregate and 
transform traffic 

from sites 

Nodes measure 
network behavior 

C 



Active Congestion Control (ACC) 
(Ted Faber, USC/ISI) 

TCP  discovers “bottleneck bandwidth” 
Does this with acks/packet loss 
RTT timescale for discovery 

 
TCP 

Sender 

TCP 
Sender 

TCP 
Rcvr Queue 

Router ACK 

ACK 

ACK 



Congestion Window Timeline 

Slow-start, then maintenance 

Time 

W 
I 
N 
D 
O 
W 

Bottleneck 
Bandwidth 



ACC models TCP congestion mgmt. 

Drops packets at congested node that 
would be resent by sender anyway 

Goal of approximating zero delay 
feedback to sender - defeat latency 

Performance improvements up to 18% 
Good example of network-embedded 

enhancement for control algorithm 



8. Interoperability 

Active Network Encapsulation Protocol 
(ANEP) 

The ABONE 



Interoperability 

Heterogeneous clouds of homogeneity 
part PLAN, part ANTS, part inactive 
part Scout, part Nemesis, part SecureXOK 

End to end solution requires: 
Active border gateways for translation, 

security domains 
Communication and resource allocation 

between execution environments 



The Problem(s) 

SwitchWare, ANTS, NetScript, etc. 
Variety of Independent and Important 

Research Goals 
But, no “ABONE” until they 

interoperate 
So….let’s make it happen! 
Alexander, Braden, Gunter, Jackson, 

Keromytis, Minden and Wetherall 



Solution: Encapsulation  

Encapsulating Active Network Frames 
Over Link Layers, IPv6 and IP 

Why header? 
Find environment for eval. 
Default processing for missing environ. 
Non-program information 

e.g., security headers 



What’s it look like? 

Format of ANEP Header: 

Version Flags Type ID 

ANEP Header Length ANEP Packet Length 

Options 

Payload 

0                          8                         16                     24 

. 

. 

. 

. 
 
. 
. 



Details: Fields 

Version: now 1; change w/ANEP header; 
discard if unknown value 

Flags: for V1, only MSB used 
MSB=0, try to forward w/default 
MSB=1, discard if TypeID not recognized 

ANEP Header Length: in 32 bit words 
includes options; 2 if no options 
 



Details: More fields... 

TypeID: evaluation environment for 
message; 16 bits; values by ANANA 
ANANA is currently Bob Braden 
Unrecognized value? Check Flags MSB 

ANEP Packet Length: Length of entire 
packet in octets (including payloads) 

Options length (variable) computed 
from Packet and Header length 
difference 



Terminology, FYI: 

Packet: ANEP Header + Payload 
Active Node: Network Element that can 

evaluate active packets 
TLV: Type/Length/Value triple 
Basic Header: First two words (8 

octets) of the ANEP Header 
 



Options 

Zero or more Type/Length/Value (TLV) 
constructs 

Follow the basic header. Format: 

FLG             Option Type                             Option Length 

Option Payload (Option Value) 

. 

. 

. 

0       2                                            16                                                31 



Option Fields 

Option Type: 14 bits, used to interpret 
Option Payload.  

Values assigned by ANANA; private 
when MSB of FLG is set. 

Unrecognized value? LSB of FLG 0, 
continue; 1 discard packet. Should log.  

Option Length:  16 bits; TLV  length  in 
32 bit words; >= 1.  

 



Option Type Values 

Reserved: 
1 - Source ID 
2 - Destination ID 
3 - Integrity Checksum 
4 - Non-Negotiated Authentication 

Format for Source, Destination, N-N: 
Scheme Identifier 

Option Payload 

. 

. 



Source Identifier  

Uniquely identifies sender 
Scheme Identifier is 32 bits; identifies 

addressing scheme to interpret the 
variable size Option Payload 

Reserved: 
1 - IPv4 Address (32 bits) 
2 - IPv6 Address (128 bits) 
3 - 802.3 Address (48 bits) (last two octets 0) 



Destination Identifier 

Uniquely identifies destination in the 
active network 

Same payload option format as Source 
Identifier 



Integrity Checksum 

Detect some packet integrity losses 
16 bit 1’s-complement of 1’s-

complement sum of the ANEP packet 
from the ANEP Version field 

Payload zero for computing checksum 
Option length field is 2. 



Non-Negotiated Authentication 

Provides 1-way authentication 
No prior negotiation assumed 
Option payload: 32 bit authentication 

scheme, followed by scheme’s data. 
Option length field >2. 
Reserved:  

1 SPKI self-signed certificate 
2 X.509 self-signed certificate 



ANEP demultiplexes to EEs 

Well-known UDP/IP Port for ANEP 

IP over subnets 

UDP Protocol 

ANEP 
Port 

ANTS 
PLAN Netscript 

Active 
 Names 



ANEP Summary 

ANEP is not the end, a way to get going 
SwitchWare, ANTS, Netscript operate 

ANEP 
Interoperability using existing 

infrastructure 



 
ABONE tunnels over Internet 
Hosts 
IP Routers 
Active Network Elements 
 



Research/Engineering Issues 

Hierarchy necessary to scale 
Extend with ARC<->ARC protocol 

ARCs will be organized in Admin. Domains 
Arbitrary ARCs cannot control routers 
ARCs resemble active firewalls 

At border gateway, need 
translation/communication between 
EE’s 



Summary: Interoperability 

Towards PLANTScript 
Internet -- hook networks together 
Interactive network -- hook active 

networks together 
Federated administrative domains 

No single node OS, API, prog lang Required 
if system is to scale 

Security, perf. isolation, local decision 
making, upgrade path, ease of devel. 



9. The Future 

Fiber optics and Active Nets 
Hardware Support for Active Nets 
Node Security vs. Network Security 
Deployment and commercialization 

Computation Over Bandwidth (COB) 



Do All-optical nets invalidate 
Active Nets vision? 

 Well, at a high-level, *no*! 
ANTS, PLAN, ALIEN fast enough for 

home/access point/LAN, up to peering 
point 

But what about *really* exotic speeds?: 
exponentially-improving CPU speeds 
exotic technologies, e.g., mediaprocessors 
or general-purpose CPUs in new archs.? 



Some rough arithmetic... 

OC192c SONET is 9.6 Gb/s 
For 64 bit CPU, 150 MW/s 
Clock rates of 500-750 MHz mean: 

RR moves: 2-3 W/instruction 
Register file writes likely bottleneck 
So about 5 instructions/word 
Can’t afford any delays 



Typical Computing, Memory & 
Network Attachment 

Architecture: 

CPU 

M 
e 
m 
o 
r 
y 
 
B 
u 
s 

Memory 

Network 
Card 

Input/Output Bus 



Why this won’t work: 
mismatched exponentials 

Memory exponential has been capacity 

S 
p 
e 
e 
d 

Calendar Time 

CPU&Nets: 
60%/year 

Memory (DRAM): 
7%/year 



Not throughput! 

Unattractive tradeoffs for networks: 

L 
a 
t 
e 
n 
c 
y 

Throughput 
64 Gb/s  

Processor Register File (no cost in cycles) 

L1 
Cache 

(2-10 Cycles) 

D 
R 
A 
M 



Fiber-coupled processing? 

OE 
+ 
Fr 
am 
ing 

Fr 
am 
ing 
+ 

EO 

64 bit register 

CPU 
Fiber 
Optic 
Input 

Fiber 
Optic 
Output 

Register-Only Media Processor (ROMP) 



Hadz c s rogramma e 
Protocol Processing Pipeline 
(P4) 

F 
P 
G 
A 

F 
P 
G 
A 

F 
P 
G 
A 

F 
P 
G 
A 

 http://www.cis.upenn.edu/~boosters 

OC3c 
ATM 

OC3c 
ATM 



Restricting Programs 

Node safe versus network safe 

All 
Programs 

Node 
Safe 
Programs 

Network 
Safe 
Programs 



Example: Local versus Global 

Program copies L3 (in) to L1, L2 (out) 

L1<-L3; 
L2<-L3; 

L1 

L3 L2 

A 

A 

B 

B 

C 

C 

D 

D 

E 

E F G H I J K L M N O P Q R 

 Is this “Multicast” Program “safe”? 



Model->Modules->Actions 

Syntax, Semantics, Node vs. Network 
Example: Securing a Network 

Us Them 

1. System 
    Model 

Checker 

2. Modules 
    loaded into nodes 

3. Resulting in 
    a robust 
    Network 



Activation potential at various 
commercially deployed rates: 

POTS/ISDN 

T1 

10M Ethernet 

OC3 

OC192 

OC12 

Increasing 
Traffic Aggregation Increasing  SW 

Service Deploy- 
ment Times 

Increasing Preference for SW 
Restriction  to Control 
             Plane 

More 
Nodes 
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