
 Active Networks
IEEE Infocom 1999 Tutorial

March 22nd, 1999

Jonathan Smith
University of Pennsylvania
http://www.cis.upenn.edu/~jms

Acknowledgments:

All Penn work and most other work
supported by DARPA ITO.

Collaborators: Alexander, Arbaugh,
Farber, Feldmeier, Gunter, Hadzic,
Keromytis, Marcus, McAuley, Menage,
Nettles, Segal and Sincoskie…

Hewlett-Packard, Intel and 3Com

Tutorial Outline:

Introduction and Background
Architecture for Active Networks

Execution Environments (EEs)
Node Operating System (NodeOS)
Security Architecture

Applications
Interoperability
The Future

1. Introduction

The Traditional Model: Store & Forward
Why do we need Active Networks?
New Model: Store, Compute & Forward
Roles for Languages, O.S. and Algs.
Nodes, Protocols and Networks

Virtual Infrastructures, e.g., IP

IP is a network interoperability layer
Interoperable through minimality:

IP

TCP
UDP

NFS HTTP
WWW

ATM
Ether

SONET

Overlays (running at hosts)

Virtual Network Infrastructure
(runs globally)

Subnetworks (run IP locally)

Packet Format,
Addressing

IP Routing Infrastructure

Model: Store and Forward

1. Dequeue Packet from Input Port
2. Determine “best” Output Port
3. Queue Packet on Output Port

Input
Packet

Output
Packet

“Passive” Networking

Smart hosts on the edges
Passive switches in the center

Challenges as Internet scales

Hope Reality

“Adding New Protocols is
EASY”

RFC 1112, 1989
Ubiquitous Multicast, 2009? 

“End to End QoS” ISSSL…

“All Intelligence at the Hosts” Not source routed

“IP can run over two cans
and a string”

And TCP can’t figure out if the
string is congested or fraying…

RFC Pages by Year 1982-1997

0
1000
2000
3000
4000
5000

And 13797 pages draft in ‘97 (9/16/97)….

Active Networking Nodes

Store, COMPUTE and Forward!

Input
Packet

Switchlet

Output
Packet

Active Network Model
Packets (“switchlets”) can change the

behavior of the switches “on-the-fly”
In-band active packets
Out-of-band active extensions

Result: ‘‘Active’’ Networks

Accelerate service creation with programmable
network infrastructure

Programmable on per-user or per-packet basis
Is this just another O.S. problem?
See Tennenhouse, Smith, et al. survey in

IEEE Network Magazine, Jan. 1997

Why Do This?

Faster response to problems and possibilities
in network

Per-user protocols
Allows experimentation
Accelerates network evolution
Examples
Web proxy caching
Auctions
Reliable multicast
Congestion control

Activations (Less radical)
Network control and measurement
flow and congestion control (self payment)
measurement (at intermediate nodes)
real-time self-expiring packets

Break “invisibility” of data link layer!
Sanity, e.g., Anti-spam filter
Inverse multicasting

 Activations (More Radical):

Self-Paying Information Transport
Routing by economics; policy with $$$

Use Multiple Routes other than failover
Route BONDing (striping)
Diversity routing
Routing is not infrastructure!

Sensor fusion, DNS & WWW caches, etc.
Address latency with Architecture

Questions for Active Networking

How to do it
Where (not whether) to do it:
under IP
IP
over IP
management plane, applications, etc.

Can it be deployed?

2. What’s known?

Experience with user programmability
Process Migration
SPIN and Exokernel
SOFTNET

User Programmability

EMACS uses LISP for extensibility
MACRO packages pervasive
LaTeX, troff, MS-Word

Metamail - LISP extensions
PostScript printers

Process Migration

Move running code from place to place
- load balancing / large data

Investigated heavily in late 1980s
Machine heterogeneity and state major

challenges
These challenges were addressed by

mobile code systems and languages such
as Java.

The U. Washington SPIN O.S.

Dynamically modifiable O.S.
Programs loaded in “on-the-fly”
Programmed in Modula-3
High performance, sandbox-style

security, safety from language
Many lessons for active networking

The MIT Exokernel

User-specialized operating system
Minimal required resources
Other elements implemented as

privileged or unprivileged libraries
Many networking applications

- DPF
- PAN

U. Linkoping SOFTNET system

Mid-1980s (thus really first A.N.)
Radio nodes with processors (6502s)

and multi-tasking Forth operating
system

Demonstrated operational dynamic
network architecture - Forth loaded on
the fly

Lessons in architecture and security

3. Active Net Architecture

User Programs
Execution Environments (EEs)
Node Operating System (NodeOS)
Security Architecture

“Active Network Architecture”
Application Application Application

Execution
Environment
(e.g., ALIEN)

Execution
Environment
(e.g., ANTS)

Node Operating System
(e.g., Nemesis, Scout, Linux, NT?)

PLAN

ALIEN/Caml/OS

AEGIS Static
Integrity
Checks

Dynamic
Integrity
Checks

Node-Node
Authentication

Recovery

Example: SwitchWare Architecture

ALIEN
Library

PLAN
Packet

PLAN
Packet

Caml
Switchlet

Caml
Switchlet

4. Execution Environments

BBN Smartpackets
MIT ANTS
Penn PLAN
Columbia Netscript
Penn ALIEN

- Detailed Case Study

The Design Space

Usability vs. Flexibility vs. Security vs.
Performance

A General-Purpose Language gets the
first two for free; other two are hard!

Domain-specific Languages may achieve
different tradeoffs

Programming Language Features

Strong typing
Garbage collection
Module thinning
Dynamic loading
Platform independent representation of

switchlets
Performance
Also desire threads and static typing

Caml and Java: Features

Caml Java
Dynamic Loading X X
GC X X
strong typing X X
array bounds X X
static typing X ?
compact format X X
arch independent X X
reasoning X
low level access X

Presenter
Presentation Notes
B2

BBN Smart Packets

Domain-specific language
- Source code - Sprocket
- Comiples to stack-based CISC - Spanner

Designed for network management
- Spanner runtime accesses MIBs

Spanner is a compact representation
- fits in an Ethernet frame

MIT Active Network Transport
System (ANTS)

Wetherall, et al., OpenArch ‘97
Largely a library of Java
Uses the Java JVM runtime
Packets carry 1 function each
Packets “drag” code after them into a

soft-state-like function cache so that
subsequent packets run fast

Packet Language for Active
Networks (PLAN)

 Hicks, Kakkar, Moore, Gunter, Nettles
Capsule-based approach
CAML runtime
 Highly-restricted domain specific

language (a safe “glue” language, like
the UNIX shell), extensible via ALIEN

Active extensions do restricted things

Netscript

Yemini and daSilva at Columbia
Domain-specific

- Network Management
- Virtual network configuration

Implemented in Java
Creates dataflow mesh
Used for dynamic firewall configuration

The ALIEN Active Loader

D. Scott Alexander
CAML runtime
CAML capsules restricted via module

thinning
Digitally-signed certificates for remote

accesses to resources
Will use for detailed case study

The ALIEN Approach

Achieved by restricting a general computing
model

Realized in ALIEN, an active loader for Caml
- General computing model
- Interface to OS
- Interface to active code

Only privileged portions of the system can
directly access shared resources

ALIEN in an Active Element

Three layer architecture

switchlets

Loader

Core Switchlet

libraries

Runtime (Caml)
OS (Linux)

As small as possible
Fixed (but overlays can mask)
Mechanism rather than policy
Basis of privilege
Interface to operating system

Core Switchlet

libraries

ALIEN Loader

Loader

Policy and mechanism
Privileged
Loadable (conceptually, Caml does not allow)
Interface to switchlets

Loader

libraries

The Core Switchlet

Core Switchlet

Less well-defined because of ease of change
IP, UDP, crypto routines, checksums
Unprivileged

Loader

Core Switchlet

libraries

ALIEN Libraries

Locating Functionality

Prefer libraries
Isolate privileged functionality
Policy is managed in Core Switchlet
Expand Loader only to allow Core Switchlet

startup

Implementation of Switchlets

Active Extensions
Loaded from disk or network (TFTP)
We use queues for communication
Could use upcalls...

Security?
…or blocking downcalls

Active Packets
ANEP encapsulated (over UDP or link layer)
Can use SANE for security
Linker/ procedure call for communications

Active Packets in ALIEN

If ANEP header indicates ALIEN
SANE processing as part of ANEP
Code portion is loaded
func is called with code, data, and func name as

arguments

ANEP
header/
SANE
auth

code
portion

link
layer

header

data
portion

func
name

Experimental Setup

DEC Alpha 21164SX @ 533Mhz
128 MB ECC synchronous DRAM
L1 cache: 16KB instruction; 8KB data
L2 cache: 1MB synchronous pipeline burst
100Mb Ethernet: DEC DS21140 “Tulip”

Full-duplex, cross-over cable
Timing via rpcc instruction (cycle counter)

Cost 2 cycles to time C code
Cost 1.5 - 2 µsec for Caml code

Presenter
Presentation Notes
B7

saneping Performance

0

5000

10000

15000

20000

25000

0 200 400 600 800 1000

us
ec

trial

ping times

Overall Breakdown of Costs

information
gathering

10%

marshaling
16%

authentication
25%

transmission
related

4%

Caml
overhead

20%

kernel/wire
26%

Major Costs

Kernel/Wire (26%, 3078 µs)
Kernel time + transmission time
To avoid

Reduce size of packet
Reduce or avoid kernel boundary crossing cost

Authentication (25%, 2910 µs)
Mostly cost of performing SHA-1 (4 times)

Presenter
Presentation Notes
B8

Controllable Costs

Caml overhead (41%, 2296 µs)
Cost to link byte code file into ALIEN

Marshaling (32%, 1816 µs)
Difficulty comes from maintaining type safety
Could improve with limited version of Marshal
Could improve further with SANE?

Sending hosts signs any valid object not created
with limited version of Marshal

Cost? Benefit?

Presenter
Presentation Notes
B9

Controllable Costs (con’t)

Information gathering (19%, 1094 µs)
Finding a route, finding an addr, reading

byte code file
Cost of reading byte code is 1043 µs

Transmission related costs (8%, 425 µs)
Call to Udp.sendto_udp
Call to queue up packet for receiver
Might be reduced by upcalls

Presenter
Presentation Notes
B10

Cryptography is Expensive

Implemented in C because too slow in
Caml

Times to hash 4MB of data

bytecode native
Caml Int32 86.45s 61.99s
Caml int 36.03s 2.48s
C 0.33s

Breakdown of Caml Costs

info gathering
19%

marshaling
32%

transmission
related

8%

Caml
overhead

41%

Caml Overheads

0

2000

4000

6000

8000

10000

12000

14000

0 100 200 300 400 500 600 700 800 900 1000

us
ec

trial

total

intro

update

Caml Overheads (con’t)

Reallocate global_data every 12 - 13 pings
Cost of “intro” rises due to increase in

symbol table size
Jumps in “intro” due to hash table resizing

Presenter
Presentation Notes
B11

Other Runtime Issues

Transmitted ping program is 2454 bytes
Loading a module from Linux buffer cache

costs 3ms
We added an extension to load from memory

Scheduler costs between 100µs and 250µs
If any thread desires I/O select() is called
We structure our code to avoid (some) calls to

the scheduler to get these results
We will need to use a different scheduler

Presenter
Presentation Notes
B12

Application 1 Application 3

Execution
Environment
(e.g., ALIEN)

Execution
Environment
(e.g., ANTS)

Node Operating System #1
(e.g., Nemesis, Linux)

Execution
Environment
(e.g., ALIEN)

Execution
Environment
(e.g., ANTS)

Node Operating System #2
(e.g.,Scout, NT)

Application 2 Application 3 Application 1 Application 4

Transmission
Facilities

Internode Interoperation

EE Deployment Challenges

EE interoperability
Will we need an EE-interoperability EE?
Or will we be limited to a subset of nodes?
Difficulties with P.L.-based security

Local Autonomy vs. Global behavior
Varying capabilities of NodeOS?

5. Node Operating System

Aggregation and Flows
Resource Management and QoS

Need to control multiplexing

E.g., assign L3 bandwidth 66%/33%

L1: 66%
L2: 33%

L1

L3 L2

End-to-End Activations

 Resource Management Challenges

EE #1 EE #2
EE #2 EE #1

 NodeOS
Send Buffers

NodeOS
Receive Buffers

ANEP/IP ANEP/IP ANEP/IP

multiplexing

ANEP/IP

Fair Queuing Code for an A.N.E.

Discriminates between “flows”
Separate queue for each current flow
Queues are serviced “round-robin”

Transmission Queue

Arrival Queues

Round-
Robin

Research/Engineering Issues

What is the relationship between the
EE and the NodeOS?
What can A.N. applications request?
How does NodeOS mux EEs?

What is the language used for loading
disciplines?
Per-EE (PLAN code generates Netscript?)
RSVP interpreted by A.N.E.?

6. Security

Models for Security and Safety
Policy Enforcement
The Secure Active Network

Environment (SANE)
AEGIS Secure Bootstrap
Local Policy Extension

Security and Safety

Safety: Good guys can make mistakes...
Security: Bad guys can program too...
Network Infrastructure is shared

it MUST work (telephony as example)
Can we get FLEXIBILITY and SECURITY?

Challenges: Safety & Security

Safety: Accidents; Security: Malice
Specification of goal (@30,000 feet!):

Right Information to
Right Place at
Right Time

Insecurity: Deviation from goal
e.g., information to wrong place

Right information/Right place

Requires identifying information units
Requires identifying places

e.g., locations, personnel, etc.
Requires security association

e.g., per-place password encrypts info.
deny information to other places
cryptographic protocols: good progress

Right Time (the tricky one)

Late information may be useless
Basis of denial of service attacks
Requires identifying real times
Languages have no time semantics

gettimeofday() in C/Unix world
is ML better? (Dannenberg’s Arctic?)

How do we control programs?

Safety & Security: P.L., O.S. or hybrid?

O.S.
Kernel,
e.g., Linux

Device
Driver

Device
Driver

Programming Language
 Environment

Example: Denial of Service

Easy to protect server hosts
Resource domains, interrupt masking,

firewall shielding on host itself
But service is unprotected between

client and server site
This problem must be solved with

network-embedded functionality

Denial of Service attack

Cross traffic in an Internet

TCP
Host

Evil
UDP

TCP
Host

?
?

Secure Active Network Environment

Demonstrates active packet programming
Extends ALIEN security model into the

network with cryptography
Guarantees no corrupted component
Allows recovery of failed components
Enables trust relationships between nodes
Allows authentication of switchlets

SANE Security Model

Only process packets from trusted hosts

Secure Active Network
Element (SANE)

“Trust, but Verify” (U.S. Nuclear
Policy..)

PLAN

Caml/O.S.

AEGIS Static Integrity
Checks (Done
Once)

Dynamic Integrity
Checks (Maybe per-
packet/SwitchLet?)

Node-Node
Authentication

Recovery

http://www.cis.upenn.edu/~waa
http://www.cis.upenn.edu/~angelos

BIOS 2
Level 1

AEGIS Architecture

BIOS 2 BIOS 2
Expansion

ROMs
Level 2

Boot
Block

Level 3

Active
Network Env. Level 4

BIOS 1 Netcard Level 0

Trusted
Repository

Network

Approach

Integrity and Trust Must be
“Grounded” at the Lowest Possible
Point.

Trust Base Case (n)

Extended
Trust Level (n+1)

Layer Crossing
Protected by

Public Key Crypto

Chaining Layered Integrity Checks
(CLIC) Extends Trust Beyond the Base
Case.

Mutually Suspicious
Nodes

Nodes Authenticate

their Neighbors
Establish Trust

Relations with Peers
(PolicyMaker?)

Use Trust Relations
to Solve Existing
Problems (eg.
Routing)

Optimize
Authentication

Active
Network

A1

A2

A3

A4 B1

B2

B3

Node to Node Authentication

Once at Boot Time, Periodically
Thereafter (Crypto “heartbeat”)

Modified Station-to-Station Protocol
(Well Known and Understood)

Key Can be Used to Authenticate on a
Hop-by-Hop Basis, Encrypt Sensitive
Information

Make Traffic Analysis Hard

7. Applications

Active Reliable Multicast
Active Bridging
Protocol Boosters
Active Congestion Control (ACC)
Active Router Control (ARC)

Active Reliable Multicast (ARM)

Reliable Multicast plagued by “ACK
implosion” when an error occurs

Retransmission expensive
In MIT’s ARM, Active Elements are

embedded in the multicast tree (not all
tree nodes need be active for ARM to
work)

ARM techniques

Active
Router

1. Duplicate NACKs
2. Best-Effort Multicast
 data Caching
3. Local retransmission

Multicast
Data

NACKs
Local
retransmission

ARM Advantages

Simulation shows performance better
than Scalable Reliable Multicast (SRM)

Duplicate NACK suppression (as in
Bashkow and Sullivan’s ChoPP) reduces
load further up the multicast tree

Cache and local retransmit reduce
bandwidth needs

Active Bridging (Scott Alexander,
et al. Proc. SIGCOMM 1997)

Linux
Kernel Input

 NIC
Output
 NIC

LAN #1 LAN #2 Frame Frame

Caml
System Loaded

modules

. .

http://oilhead.cis.upenn.edu/~salex

Active Bridge Module Architecture

Control Switchlet

DEC

Learning Algorithm

Buffered Repeater

ALIEN

IEEE

Automatic Protocol Transition

Demonstrates dynamic reconfiguration
Old protocol
New protocol
Control Switchlet

Active Bridge Performance

58 - 60 Mbps vs. 86 Mbps for C buffered
repeater (over 100Mbps Ethernet)
Threads and scheduler
(Kernel crossings)

Protocol transition < 0.1 sec
vs. 30 sec start up time for IEEE algorithm

2*PPro
300Mhz
256MB

2*PPro
300Mhz
256MB

2*PPro
300Mhz
256MB

Analysis - ttcp throughput

85.74Mbps 136 µs per packet
57.73Mbps 202 µs per packet
 66 µs per packet is cost of Bridge
54 µs is Bridge processing
 12 µs “data formatting” (C to/from

Caml)
Language runtime imposed overheads

Lessons from Bridge

Performance at ca. LAN speeds
Incremental Loads:

Buffered Repeater
Self-Learning
Spanning Tree Algs. (DEC & IEEE)
Automatic STA Transition in <0.1sec
Recovery from module failure

http://oilhead.cis.upenn.edu/~salex

Protocol Boosters

Protocol Elements added ‘‘as-needed’’
Example of “optimistic” design method
Useful to maintain common case

Application

Booster DeBooster

Application

Host A Host B

Network
Element

Boosted Subnet

Examples

Implemented over IP on FreeBSD
Encryption Booster
Compression Booster

FEC Booster at Bellcore
Hardware Support: The P4*

*see http://www.cis.upenn.edu/~boosters/boosters.html

Performance Potential:

Thruput: TCP, TCP/FEC, Hybrid

Bit Error Rate

T
h
r
u
p
u
t

*

*
*
 * *

 * *
 *
 * *

Active Router Control (ARC)

IP Router/Forwarders co-located with
Active Elements:

IP

IP
IP

IP

Active
Element

LAN

Forwarding
Tables

Routing Policies and
Decisions (and New
Services)

Implementation of ARC, I

Early experiment by Bill Marcus
Bellcore protocol booster kernel on P.C.
Control Cisco 7000 through policy based

routing (PBR) interface
Current work by Osman Ertugay at Penn

PLAN program on P.C. controlling Cisco
3600 through Policy-Based Rting interface

Working with 3Com on CB 3500 platform

Implementation of ARC, II

Project by Columbia & Bay/Nortel
Netscript on Accelar

Programmable gateway:
Router, firewall, analyzer/shaper, caching

server… (boundary smarts!)
Investigate SW architecture and HW

support

ARC becoming possible in COTS

Input
Port #1

Input
Port #2

Output
Port #2

Input
Port #3

Output
Port #1

Output
Port #3

Active Network
Element (e.g., JVM)

U. Wash Detour Architecture:
Cooperating Active Routers

D

D

D

D D C C

C

C

C C

C C
C

D

D C

D

Detour nodes at network borders

Packets routed
along tunnels

Support for non-
Detour networks

Nodes aggregate and
transform traffic

from sites

Nodes measure
network behavior

C

Active Congestion Control (ACC)
(Ted Faber, USC/ISI)

TCP discovers “bottleneck bandwidth”
Does this with acks/packet loss
RTT timescale for discovery

TCP

Sender

TCP
Sender

TCP
Rcvr Queue

Router ACK

ACK

ACK

Congestion Window Timeline

Slow-start, then maintenance

Time

W
I
N
D
O
W

Bottleneck
Bandwidth

ACC models TCP congestion mgmt.

Drops packets at congested node that
would be resent by sender anyway

Goal of approximating zero delay
feedback to sender - defeat latency

Performance improvements up to 18%
Good example of network-embedded

enhancement for control algorithm

8. Interoperability

Active Network Encapsulation Protocol
(ANEP)

The ABONE

Interoperability

Heterogeneous clouds of homogeneity
part PLAN, part ANTS, part inactive
part Scout, part Nemesis, part SecureXOK

End to end solution requires:
Active border gateways for translation,

security domains
Communication and resource allocation

between execution environments

The Problem(s)

SwitchWare, ANTS, NetScript, etc.
Variety of Independent and Important

Research Goals
But, no “ABONE” until they

interoperate
So….let’s make it happen!
Alexander, Braden, Gunter, Jackson,

Keromytis, Minden and Wetherall

Solution: Encapsulation

Encapsulating Active Network Frames
Over Link Layers, IPv6 and IP

Why header?
Find environment for eval.
Default processing for missing environ.
Non-program information

e.g., security headers

What’s it look like?

Format of ANEP Header:

Version Flags Type ID

ANEP Header Length ANEP Packet Length

Options

Payload

0 8 16 24

.

.

.

.

.
.

Details: Fields

Version: now 1; change w/ANEP header;
discard if unknown value

Flags: for V1, only MSB used
MSB=0, try to forward w/default
MSB=1, discard if TypeID not recognized

ANEP Header Length: in 32 bit words
includes options; 2 if no options

Details: More fields...

TypeID: evaluation environment for
message; 16 bits; values by ANANA
ANANA is currently Bob Braden
Unrecognized value? Check Flags MSB

ANEP Packet Length: Length of entire
packet in octets (including payloads)

Options length (variable) computed
from Packet and Header length
difference

Terminology, FYI:

Packet: ANEP Header + Payload
Active Node: Network Element that can

evaluate active packets
TLV: Type/Length/Value triple
Basic Header: First two words (8

octets) of the ANEP Header

Options

Zero or more Type/Length/Value (TLV)
constructs

Follow the basic header. Format:

FLG Option Type Option Length

Option Payload (Option Value)

.

.

.

0 2 16 31

Option Fields

Option Type: 14 bits, used to interpret
Option Payload.

Values assigned by ANANA; private
when MSB of FLG is set.

Unrecognized value? LSB of FLG 0,
continue; 1 discard packet. Should log.

Option Length: 16 bits; TLV length in
32 bit words; >= 1.

Option Type Values

Reserved:
1 - Source ID
2 - Destination ID
3 - Integrity Checksum
4 - Non-Negotiated Authentication

Format for Source, Destination, N-N:
Scheme Identifier

Option Payload

.

.

Source Identifier

Uniquely identifies sender
Scheme Identifier is 32 bits; identifies

addressing scheme to interpret the
variable size Option Payload

Reserved:
1 - IPv4 Address (32 bits)
2 - IPv6 Address (128 bits)
3 - 802.3 Address (48 bits) (last two octets 0)

Destination Identifier

Uniquely identifies destination in the
active network

Same payload option format as Source
Identifier

Integrity Checksum

Detect some packet integrity losses
16 bit 1’s-complement of 1’s-

complement sum of the ANEP packet
from the ANEP Version field

Payload zero for computing checksum
Option length field is 2.

Non-Negotiated Authentication

Provides 1-way authentication
No prior negotiation assumed
Option payload: 32 bit authentication

scheme, followed by scheme’s data.
Option length field >2.
Reserved:

1 SPKI self-signed certificate
2 X.509 self-signed certificate

ANEP demultiplexes to EEs

Well-known UDP/IP Port for ANEP

IP over subnets

UDP Protocol

ANEP
Port

ANTS
PLAN Netscript

Active
 Names

ANEP Summary

ANEP is not the end, a way to get going
SwitchWare, ANTS, Netscript operate

ANEP
Interoperability using existing

infrastructure

ABONE tunnels over Internet
Hosts
IP Routers
Active Network Elements

Research/Engineering Issues

Hierarchy necessary to scale
Extend with ARC<->ARC protocol

ARCs will be organized in Admin. Domains
Arbitrary ARCs cannot control routers
ARCs resemble active firewalls

At border gateway, need
translation/communication between
EE’s

Summary: Interoperability

Towards PLANTScript
Internet -- hook networks together
Interactive network -- hook active

networks together
Federated administrative domains

No single node OS, API, prog lang Required
if system is to scale

Security, perf. isolation, local decision
making, upgrade path, ease of devel.

9. The Future

Fiber optics and Active Nets
Hardware Support for Active Nets
Node Security vs. Network Security
Deployment and commercialization

Computation Over Bandwidth (COB)

Do All-optical nets invalidate
Active Nets vision?

 Well, at a high-level, *no*!
ANTS, PLAN, ALIEN fast enough for

home/access point/LAN, up to peering
point

But what about *really* exotic speeds?:
exponentially-improving CPU speeds
exotic technologies, e.g., mediaprocessors
or general-purpose CPUs in new archs.?

Some rough arithmetic...

OC192c SONET is 9.6 Gb/s
For 64 bit CPU, 150 MW/s
Clock rates of 500-750 MHz mean:

RR moves: 2-3 W/instruction
Register file writes likely bottleneck
So about 5 instructions/word
Can’t afford any delays

Typical Computing, Memory &
Network Attachment

Architecture:

CPU

M
e
m
o
r
y

B
u
s

Memory

Network
Card

Input/Output Bus

Why this won’t work:
mismatched exponentials

Memory exponential has been capacity

S
p
e
e
d

Calendar Time

CPU&Nets:
60%/year

Memory (DRAM):
7%/year

Not throughput!

Unattractive tradeoffs for networks:

L
a
t
e
n
c
y

Throughput
64 Gb/s

Processor Register File (no cost in cycles)

L1
Cache

(2-10 Cycles)

D
R
A
M

Fiber-coupled processing?

OE
+
Fr
am
ing

Fr
am
ing
+

EO

64 bit register

CPU
Fiber
Optic
Input

Fiber
Optic
Output

Register-Only Media Processor (ROMP)

Hadz c s rogramma e
Protocol Processing Pipeline
(P4)

F
P
G
A

F
P
G
A

F
P
G
A

F
P
G
A

 http://www.cis.upenn.edu/~boosters

OC3c
ATM

OC3c
ATM

Restricting Programs

Node safe versus network safe

All
Programs

Node
Safe
Programs

Network
Safe
Programs

Example: Local versus Global

Program copies L3 (in) to L1, L2 (out)

L1<-L3;
L2<-L3;

L1

L3 L2

A

A

B

B

C

C

D

D

E

E F G H I J K L M N O P Q R

 Is this “Multicast” Program “safe”?

Model->Modules->Actions

Syntax, Semantics, Node vs. Network
Example: Securing a Network

Us Them

1. System
 Model

Checker

2. Modules
 loaded into nodes

3. Resulting in
 a robust
 Network

Activation potential at various
commercially deployed rates:

POTS/ISDN

T1

10M Ethernet

OC3

OC192

OC12

Increasing
Traffic Aggregation Increasing SW

Service Deploy-
ment Times

Increasing Preference for SW
Restriction to Control
 Plane

More
Nodes

	 Active Networks�IEEE Infocom 1999 Tutorial�March 22nd, 1999�
	Acknowledgments:
	Tutorial Outline:
	1. Introduction
	Virtual Infrastructures, e.g., IP
	IP Routing Infrastructure
	�“Passive” Networking
	Challenges as Internet scales
	RFC Pages by Year 1982-1997
	Active Networking Nodes
	Active Network Model
	Result: ‘‘Active’’ Networks
	Why Do This?
	Activations (Less radical)	
	 Activations (More Radical):
	Questions for Active Networking
	2. What’s known?
	User Programmability
	Process Migration
	The U. Washington SPIN O.S.
	The MIT Exokernel
	U. Linkoping SOFTNET system
	3. Active Net Architecture
	“Active Network Architecture”
	Slide Number 25
	4. Execution Environments
	The Design Space
	Programming Language Features
	Caml and Java: Features
	BBN Smart Packets
	MIT Active Network Transport System (ANTS)
	Packet Language for Active Networks (PLAN)
	Netscript
	The ALIEN Active Loader
	The ALIEN Approach
	ALIEN in an Active Element
	ALIEN Loader
	The Core Switchlet
	ALIEN Libraries
	Locating Functionality
	Implementation of Switchlets
	Active Packets in ALIEN
	Experimental Setup
	saneping Performance
	Overall Breakdown of Costs
	Major Costs
	Controllable Costs
	Controllable Costs (con’t)
	Cryptography is Expensive
	Breakdown of Caml Costs
	Caml Overheads
	Caml Overheads (con’t)
	Other Runtime Issues
	Internode Interoperation
	EE Deployment Challenges
	5. Node Operating System
	Need to control multiplexing
	End-to-End Activations
	Fair Queuing Code for an A.N.E.
	Research/Engineering Issues
	6. Security
	Security and Safety
	Challenges: Safety & Security
	Right information/Right place
	Right Time (the tricky one)
	How do we control programs?
	Example: Denial of Service
	Denial of Service attack
	Secure Active Network Environment
	SANE Security Model
	Secure Active Network Element (SANE)
	AEGIS Architecture
	Approach
	Mutually Suspicious�Nodes�
	Node to Node Authentication�
	7. Applications
	Active Reliable Multicast (ARM)
	ARM techniques
	ARM Advantages
	Active Bridging (Scott Alexander, et al. Proc. SIGCOMM 1997)
	Active Bridge Module Architecture
	Automatic Protocol Transition
	Active Bridge Performance
	Analysis - ttcp throughput
	Lessons from Bridge
	Protocol Boosters
	Examples
	Performance Potential:
	Active Router Control (ARC)
	Implementation of ARC, I
	Implementation of ARC, II
	ARC becoming possible in COTS
	U. Wash Detour Architecture:�Cooperating Active Routers
	Active Congestion Control (ACC)�(Ted Faber, USC/ISI)
	Congestion Window Timeline
	ACC models TCP congestion mgmt.
	8. Interoperability
	Interoperability
	The Problem(s)
	Solution: Encapsulation
	What’s it look like?
	Details: Fields
	Details: More fields...
	Terminology, FYI:
	Options
	Option Fields
	Option Type Values
	Source Identifier
	Destination Identifier
	Integrity Checksum
	Non-Negotiated Authentication
	ANEP demultiplexes to EEs
	ANEP Summary
	�ABONE tunnels over Internet
	Research/Engineering Issues
	Summary: Interoperability
	9. The Future
	Do All-optical nets invalidate Active Nets vision?
	Some rough arithmetic...
	Typical Computing, Memory & Network Attachment
	Why this won’t work: mismatched exponentials
	Not throughput!
	Fiber-coupled processing?
	Hadzic’s Programmable Protocol Processing Pipeline (P4)
	Restricting Programs
	Example: Local versus Global
	Model->Modules->Actions
	Activation potential at various commercially deployed rates:

