
 Security Issues in Active
Networking

IWAN ‘01 Tutorial
September 30th, 2001

Jonathan M. Smith
University of Pennsylvania
http://www.cis.upenn.edu/~jms

Tutorial Outline:

Security Challenges
Principles of Active Network Security
Protection Methods

Language Based
Node Architecture Based
Network Based

Applications
Summary

1. Security Challenges

What is security (versus, say safety)?
Protection of Resources
Computational Resources
Objects/Memory Resources

(namespace)
Bandwidth Resources - QoS

Challenges: Safety & Security

Safety: Accidents; Security: Malice
Specification of goal (@30,000 feet!):

Right Information to
Right Place at
Right Time

Insecurity: Deviation from goal
e.g., information to wrong place

Right information/Right place

Requires identifying information units
Requires identifying places

e.g., locations, personnel, etc.
Requires security association

e.g., per-place password encrypts info.
deny information to other places
cryptographic protocols: good progress

Right Time (the tricky one)

Late information may be useless
Basis of denial of service attacks
Requires identifying real times
Languages have no time semantics

gettimeofday() in C/Unix world
is ML better? (Dannenberg’s Arctic?)

Need to control multiplexing

E.g., assign L3 bandwidth 66%/33%

L1: 66%
L2: 33%

L1

L3 L2

Resource Management, End-to-End

 Resource Management Challenges

EE #1 EE #2
EE #2 EE #1

 NodeOS
Send Buffers

NodeOS
Receive Buffers

ANEP/IP ANEP/IP ANEP/IP

multiplexing

ANEP/IP

Denial of Service

Easy to protect server hosts
Resource domains, interrupt masking,

firewall shielding on host itself
But service is unprotected between

client and server site
This problem must be solved with

network-embedded functionality

Denial of Service attack

Cross traffic in an Internet

TCP
Host

Evil
UDP

TCP
Host

?
?

2. Principles of Active Network
Security

Existing Internet is ad-hoc (& complex)
AN complex in a different way, but

leverages new design principles
Modern programming languages for safety
Extensive use of cryptography
Conscious of resource control & QoS
Safe, rapid adaptation to change

Complexity: RFC Pages ‘82-
’97

0
5000

10000
15000
20000

Draft pages overlaid since 1995
log(f(pages,year))>log(f(users,year))?

Active Network Model
Packets can change the behavior of the

switches “on-the-fly”
In-band active packets
Out-of-band active extensions

Restricting Programs

Node safe versus network safe

All
Programs

Node
Safe
Programs

Network
Safe
Programs

Observations

Code is either untrusted or trusted
If untrusted, mechanisms must defend

against misuse
Alternative is to make trusted, e.g., by

trusted compilation with restrictions
Untrusted requires heavywight mech.

Example – OS, e.g., Cambridge Xenoserver

Principles

Network safety without node safety hard
Node guarantees can extend to net
Distributed state hard to model,

particularly at compilation time
Cryptography is not security
Resource management limited to layers

under control (e.g., bridge for layer 2)

3. Protection

What must be protected in a network?
Bandwidth resources
Memory resources
CPU / computational resources
Static versus dynamic protection
Location of protection in architecture

How do we control programs?

Safety & Security: P.L., O.S. or hybrid?

O.S.
Kernel,
e.g., Linux

Device
Driver

Device
Driver

Programming Language
 Environment

3.1 Languages / Programming

ANTS
ALIEN
PLAN
SNAP
Language Independent Approaches

ANTS

Active Network Transport System
See Weatherall paper in SOSP 99
ANTS based on a Java platform
Used for several applications such as

Active Reliable Multicast (ARM)
Security Model of Namespace Isolation
Achieved with MD5 hash of module

The ALIEN Active Loader

See Alexander IWAN 99
Active extensions and packets in CAML
Namespace isolation via module thinning
Only privileged portions of the system

can directly access shared resources
Digital signatures for remote accesses

Resembles a capability model

ALIEN in an Active Element

Three layer architecture

active
code

Loader

Core Switchlet

libraries

Runtime (Caml)
OS (Linux)

saneping Performance

0

5000

10000

15000

20000

25000

0 200 400 600 800 1000

us
ec

trial

ping times

Overall Breakdown of Costs

information
gathering

10%

marshaling
16%

authentication
25%

transmission
related

4%

Caml
overhead

20%

kernel/wire
26%

Major Costs

Kernel/Wire (26%, 3078 µs)
Kernel time + transmission time
To avoid

Reduce size of packet
Reduce or avoid kernel boundary crossing cost

Authentication (25%, 2910 µs)
Mostly cost of performing SHA-1 (4 times)

Presenter
Presentation Notes
B8

Cryptography is Expensive

Implemented in C because too slow in
Caml

Times to hash 4MB of data

bytecode native
Caml Int32 86.45s 61.99s
Caml int 36.03s 2.48s
C 0.33s

The take-home lesson:

Must reduce per-packet crypto costs:
Active extension amortizes costs
ANTS caching amortizes costs
Smaller packets (Dense CISC, a la BBN)

Or, find another way to avoid crypto in
the common case…

Packet Language for Active
Networks (PLAN)

 Hicks, Kakkar, Moore, Gunter, Nettles
Capsule-based approach
CAML runtime
 Highly-restricted domain specific

language (a safe “glue” language, like
the UNIX shell), extensible via ALIEN

Active extensions do restricted things

Safe and Nimble Active Packets

Build on first-generation successes

Notably, PLAN/PLANet
Address open issues of

Resource safety
Performance

SNAP adds flexibility over IP without
sacrificing safety or efficiency

http://www.cis.upenn.edu/~switchware/SNAP

SNAP Language Design

Stack-based bytecode VM
SNAP instructions

Simple computation, environment query,
control flow, packet sends

Resource safety via language design
Execute in constant time and space
All branches go forward

Safety and Security

Node integrity
Isolation
Resource safety

TTL-like resource bound
Linear CPU and memory usage
A priori guarantees

Compilation techniques

SNAP: no backward branches!
Function inlining
Loop unrolling

User provides upper bound
Generally few iterations anyway

Code size issues
Most PLAN programs very simple
Resource use tied to access bandwidth

Packet format

IPv4 destination addr
IPv4 source addr

Resource bound Source port
Entry point Code size

Heap size Stack size

Code

Heap

Stack

Example: SNAP ping
forw ; move on if not at dest
bne 5 ; jump 5 instrs if nonzero on top
push 1 ; 1 means “on return trip”
getsrc ; get source field
forwto ; send return packet
pop ; pop the 1 for local ping
demux ; deliver payload

A B C

Example: SNAP ping
forw ; move on if not at dest
bne 5 ; jump 5 instrs if nonzero on top
push 1 ; 1 means “on return trip”
getsrc ; get source field
forwto ; send return packet
pop ; pop the 1 for local ping
demux ; deliver payload

A B C

data
port

0

S:A
D:C

Example: SNAP ping
forw ; move on if not at dest
bne 5 ; jump 5 instrs if nonzero on top
push 1 ; 1 means “on return trip”
getsrc ; get source field
forwto ; send return packet
pop ; pop the 1 for local ping
demux ; deliver payload

A B C

data
port

0

S:A
D:C

Example: SNAP ping
forw ; move on if not at dest
bne 5 ; jump 5 instrs if nonzero on top
push 1 ; 1 means “on return trip”
getsrc ; get source field
forwto ; send return packet
pop ; pop the 1 for local ping
demux ; deliver payload

A B C

data
port

0

S:A
D:C

Example: SNAP ping
forw ; move on if not at dest
bne 5 ; jump 5 instrs if nonzero on top
push 1 ; 1 means “on return trip”
getsrc ; get source field
forwto ; send return packet
pop ; pop the 1 for local ping
demux ; deliver payload

A B C

data
port

0

S:A
D:C

Example: SNAP ping
forw ; move on if not at dest
bne 5 ; jump 5 instrs if nonzero on top
push 1 ; 1 means “on return trip”
getsrc ; get source field
forwto ; send return packet
pop ; pop the 1 for local ping
demux ; deliver payload

A B C

data
port

S:A
D:C

Example: SNAP ping
forw ; move on if not at dest
bne 5 ; jump 5 instrs if nonzero on top
push 1 ; 1 means “on return trip”
getsrc ; get source field
forwto ; send return packet
pop ; pop the 1 for local ping
demux ; deliver payload

A B C

data
port

1

S:A
D:C

Example: SNAP ping
forw ; move on if not at dest
bne 5 ; jump 5 instrs if nonzero on top
push 1 ; 1 means “on return trip”
getsrc ; get source field
forwto ; send return packet
pop ; pop the 1 for local ping
demux ; deliver payload

A B C

data
port

1
A

S:A
D:C

Example: SNAP ping
forw ; move on if not at dest
bne 5 ; jump 5 instrs if nonzero on top
push 1 ; 1 means “on return trip”
getsrc ; get source field
forwto ; send return packet
pop ; pop the 1 for local ping
demux ; deliver payload

A B C

data
port

1

S:C
D:A

Example: SNAP ping
forw ; move on if not at dest
bne 5 ; jump 5 instrs if nonzero on top
push 1 ; 1 means “on return trip”
getsrc ; get source field
forwto ; send return packet
pop ; pop the 1 for local ping
demux ; deliver payload

A B C

data
port

1

S:C
D:A

Example: SNAP ping
forw ; move on if not at dest
bne 5 ; jump 5 instrs if nonzero on top
push 1 ; 1 means “on return trip”
getsrc ; get source field
forwto ; send return packet
pop ; pop the 1 for local ping
demux ; deliver payload

A B C

data
port

1

S:C
D:A

Example: SNAP ping
forw ; move on if not at dest
bne 5 ; jump 5 instrs if nonzero on top
push 1 ; 1 means “on return trip”
getsrc ; get source field
forwto ; send return packet
pop ; pop the 1 for local ping
demux ; deliver payload

A B C

data
port

S:C
D:A

Example: SNAP ping
forw ; move on if not at dest
bne 5 ; jump 5 instrs if nonzero on top
push 1 ; 1 means “on return trip”
getsrc ; get source field
forwto ; send return packet
pop ; pop the 1 for local ping
demux ; deliver payload

A B C

data

SNAP Contributions

Provable resource safety
Linear resource usage
Guaranteed via language restrictions

Retains flexibility of previous systems
Performance comparable to an IP

software router

Language Independent
Approaches

Proof-carrying code – a major idea
Program (mobile code) carries with it a proof

of correctness
Much easier to verify proof than to perform

proof
Code-signing

Challenge with code signing is trust
management

STRONGMAN Architecture

Policy E.L.
Policy E.L.

Policy Compiler
NW
Info.

KeyNote
Expressions

Firewall
Host

Router

Global
Policy

Local
Enforce-
ment

STRONGMAN

Penn / AT&T Research
Logical “meta-KeyNote”
High-level policy compiles to KeyNote
Policy-based configuration of groups of

security endpoints (firewalls, hosts,
routers, …)

Multiple policy expression languages
compile to common KeyNote policy model

Describing Actions in KeyNote

<Attribute,Value> Action Environment
 $filename “/home/stan/foo”
 $owner “stan”
 $hostname “lake.sp.co.us”

Attribute semantics application-specific
An Action always associated w/Requestor

KeyNote Example

Authorizer: stan’s public key
Licensees: wendy’s public key
Conditions: $file_owner == “stan”

 && $filename ~= “/home/stan/[^/]*”
 -> “true”;

Signature: stan’s signature

3.2 Node Architecture

A Standard Architecture has been
defined by DARPA

There are various places where security
principles must be applied

When consider entire node, must take
NodeOS & hardware into account

Several NodeOS: Scout, Janos, AMP
(see Peterson, et al., IEEE JSAC)

“Active Network Architecture”
Application Application Application

Execution
Environment
(e.g., ALIEN)

Execution
Environment
(e.g., ANTS)

Node Operating System
(e.g., Nemesis, Scout, Linux, NT?)

PLAN

ALIEN/Caml/OS

AEGIS Static
Integrity
Checks

Dynamic
Integrity
Checks

Node-Node
Authentication

Recovery

Example: SwitchWare Architecture

ALIEN
Library

PLAN
Packet

PLAN
Packet

Caml
Active Code

Caml
Active Code

Resource Controlled Active
Network Environment (RCANE)
Manage CPU, Memory and Bandwidth

Challenge: Modern PL heaps (GC)
Challenge: Interrupts
Challenge: CPU/Mem/BW tradeoffs

Approach
Nemesis for NodeOS + SwitchWare EE
See Menage, IWAN 99, Alexander, et al.,

JCN, March 2001.

RCANE Vertical Architecture:
Application Application

Execution
Environment

A

Execution
Environment

B

Node Operating System
(e.g., Nemesis, Scout, Linux, NT?)

“A” share
of machine

“B” share
of machine

3.3 Network Based

Nodes are interconnected to form the
network

Likely to interoperate nodes with
conventional IP network devices, either
as overlays or in management roles

Distributed Resource Control rather
than purely local, as in programming
environment or in node

SANE Security Model

Only process packets from trusted hosts

Model->Modules->Actions

Syntax, Semantics, Node vs. Network
Example: Securing a Network

Us Them

1. System
 Model

Checker

2. Modules
 loaded into nodes

3. Resulting in
 a robust
 Network

Mutually Suspicious
Nodes

Nodes Authenticate

their Neighbors
Establish Trust

Relations with Peers
(PolicyMaker)

Use Trust Relations to
Solve Existing Problems
(eg. Routing)

Optimize
Authentication

Active
Network

A1

A2

A3

A4 B1

B2

B3

Node to Node Authentication

Once at Boot Time, Periodically
Thereafter (Crypto “heartbeat”)

Modified Station-to-Station Protocol
(Well Known and Understood)

Key Can be Used to Authenticate on a
Hop-by-Hop Basis, Encrypt Sensitive
Information

Make Traffic Analysis Hard

4. Applications

Firewalls
Active Queue Management (AQM)
FIRE
Packet Marking
Hash-Based IP Traceback

4.1 Firewalls

Preceded organized A.N. effort
Response to flaw in Internet scheme
End-to-end argument results in network

security dependent on hosts
Hosts are insecure, ergo, net insecure
Example: DDoS sources

Why a firewall is an A.N.

Consists of filtering rules – see, e.g., the
Berkeley Packet Filter (BPF) of McCanne and
Jacobson

These rules are composed of pattern/action
pairs – e.g., IP source + destination address
and port numbers, with actions such as drop,
pass and log

The programming is event-driven, in the style
of PLs such as awk. Safe because limited.

Advanced Firewalls and A.N.

Firewall technology widely used
Would like “learning” for rule DB,

action set
Example: Intrusion Detection Systems

(IDS) are string-matchers and event
loggers

Connect IDS to firewall policy for
greater dynamics

Firewall Management

Common policies needed at multiple
firewalls

One approach is careful manual
configuration
Not scalable

4.2 Active Queue Management

Challenge of edge-provided congestion
control – all edges must “play nice”

Evil TCPs, or UDP lead to a problem
Thus, network-embedded solutions have

appeared as an attempt to solve these
problems – called AQM in IP world

Floyd and Jacobson RED, BLUE
Stoica Core-Stateless Fair Queuing

Basic idea of AQM

Packets assigned to queues in node
When queue lengths hit “high water”

mark, packets begin to be dropped
Dropped at random location in queue
Fairness, as “hogs” will be over-

represented in queue
Jeffay, et al. suggest tuning tough in

SIGCOMM 2000 paper

Piecewise A.N. Node Solution:
Loadable “Queue Management”

Discriminates between “flows”
Separate queue for each current flow
Queues are serviced WFQ
Control via RSVP, QoS Broker, etc.

Transmission Queue

Arrival Queues

Weighted
Fair Queuing

4.3 FIRE
Flexible Intra-AS Routing Environment
Partridge, at al., SIGCOMM 2000
Link-State Intra-Domain Protocol
Run-time reprogrammability

Information advertised
Routing Algorithms (by traffic class!)
All done in Java

Can think of as an Active BGP

4.4 Packet Marking

Savage, et al. paper in SIGCOMM 2000
Approach to dealing with Denial of

Service Attacks
Basic idea is to (statistically) mark

packets that go by

Probabilistic Packet Marking

Routers periodically mark packets with
their ID

Only mark if packet not already marked
Infrequent, since “slow path”
Prob(mark)*#packets large with DOS
Can be used to locate DOS source
Improved by Song, Perrig in Infocom 01

4.5 Hash-Based IP Traceback

Snoeren, et al., SIGCOMM 2001
Identifies originator of IP packet
Generates audit trails within the

network
Routers enhanced with Source Path

Isolation Engine – SPIE
SPIEs contain packet digests

5. Summary

Security of Active Networks themselves
Use of AN techniques to secure IP nets
Use of AN techniques to build more

secure networks of all types

Security of Active Networks

Languages and Node Architectures
show secure nodes can be built, for
both active extensions and active
packets (Alien, PLAN, SNAP, ANTS)

Cryptography extends many node
protections to networked uses

Resources can be managed at both node
and network levels – RCANE, NodeOS

Use of AN techniques to
Secure IP networks

Firewalls, NATs, more active follow-ons
Programmable AQM (as with

programmable BGP in FIRE)
Packet Marking and IP-traceback

techniques to locate attackers and
attacks

Active Router Control models

Active Router Control (e.g. FAIN)

Routers co-located with Active Nodes

IP

IP
IP

IP

Active
Element

LAN

Fastpath IP
routing

Security Policies and
Decisions (and New
Services)

AN techniques for more secure
networks of all types

Begin to construct Internet overlays
with provable properties such as SNAP
resource bounds

Many functions of “non A.N.” devices
are done in software (often see hacks
of Cisco IOS in bugtraq)

Migrate A.N. techniques into devices

Acknowledgements

DARPA and NSF for high-risk funding
D. Scott Alexander for ALIEN slides
Jonathan Moore for SNAP slides
Collaborators: Dave Sincoskie, Bill Marcus,

Angelos Keromytis, Bill Arbaugh, Tony
Bogovic, David Feldmeier, Dave Farber, Scott
Nettles, Carl Gunter, Mike Hicks, Jon Moore,
Kostas Anagnostakis, Stefan Miltchev, Paul
Menage and Sotiris Ioannidis

	 Security Issues in Active Networking�IWAN ‘01 Tutorial�September 30th, 2001�
	Tutorial Outline:
	1. Security Challenges
	Challenges: Safety & Security
	Right information/Right place
	Right Time (the tricky one)
	Need to control multiplexing
	Resource Management, End-to-End
	Denial of Service
	Denial of Service attack
	2. Principles of Active Network Security
	Complexity: RFC Pages ‘82-’97
	Active Network Model
	Restricting Programs
	Observations
	Principles
	3. Protection
	How do we control programs?
	3.1 Languages / Programming
	ANTS
	The ALIEN Active Loader
	ALIEN in an Active Element
	saneping Performance
	Overall Breakdown of Costs
	Major Costs
	Cryptography is Expensive
	The take-home lesson:
	Packet Language for Active Networks (PLAN)
	Safe and Nimble Active Packets
	SNAP Language Design
	Safety and Security
	Compilation techniques
	Packet format
	Example: SNAP ping
	Example: SNAP ping
	Example: SNAP ping
	Example: SNAP ping
	Example: SNAP ping
	Example: SNAP ping
	Example: SNAP ping
	Example: SNAP ping
	Example: SNAP ping
	Example: SNAP ping
	Example: SNAP ping
	Example: SNAP ping
	Example: SNAP ping
	SNAP Contributions
	Language Independent Approaches
	STRONGMAN Architecture
	STRONGMAN
	Describing Actions in KeyNote
	KeyNote Example
	3.2 Node Architecture
	“Active Network Architecture”
	Slide Number 55
	Resource Controlled Active Network Environment (RCANE)
	RCANE Vertical Architecture:
	3.3 Network Based
	SANE Security Model
	Model->Modules->Actions
	Mutually Suspicious�Nodes�
	Node to Node Authentication�
	4. Applications
	4.1 Firewalls
	Why a firewall is an A.N.
	Advanced Firewalls and A.N.
	Firewall Management
	4.2 Active Queue Management
	Basic idea of AQM
	Piecewise A.N. Node Solution: Loadable “Queue Management”
	4.3 FIRE
	4.4 Packet Marking
	Probabilistic Packet Marking
	4.5 Hash-Based IP Traceback
	5. Summary
	Security of Active Networks
	Use of AN techniques to Secure IP networks
	Active Router Control (e.g. FAIN)
	AN techniques for more secure networks of all types
	Acknowledgements

