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1. Security Challenges 

What is security (versus, say safety)? 
Protection of Resources 
Computational Resources 
Objects/Memory Resources 

(namespace) 
Bandwidth Resources - QoS 



Challenges: Safety & Security 

Safety: Accidents; Security: Malice 
Specification of goal (@30,000 feet!): 

Right Information to 
Right Place at 
Right Time 

Insecurity: Deviation from goal 
e.g., information to wrong place 



Right information/Right place 

Requires identifying information units 
Requires identifying places 

e.g., locations, personnel, etc. 
Requires security association 

e.g., per-place password encrypts info. 
deny information to other places 
cryptographic protocols: good progress 



Right Time (the tricky one) 

Late information may be useless 
Basis of denial of service attacks 
Requires identifying real times 
Languages have no time semantics 

gettimeofday() in C/Unix world 
is ML better? (Dannenberg’s Arctic?) 



Need to control multiplexing 

E.g., assign L3 bandwidth 66%/33% 

L1: 66% 
L2: 33% 

L1 

L3 L2 



Resource Management, End-to-End 

 Resource Management Challenges 

 
 

EE #1 EE #2 
EE #2 EE #1 

 NodeOS 
Send Buffers 

NodeOS 
Receive Buffers 

ANEP/IP ANEP/IP ANEP/IP 

multiplexing 

ANEP/IP 



Denial of Service 

Easy to protect server hosts 
Resource domains, interrupt masking, 

firewall shielding on host itself 
But service is unprotected between 

client and server site 
This problem must be solved with 

network-embedded functionality 



Denial of Service attack 

Cross traffic in an Internet 

TCP 
Host 

Evil 
UDP 

TCP 
Host 

? 
? 



2. Principles of Active Network 
Security 

Existing Internet is ad-hoc (& complex) 
AN complex in a different way, but 

leverages new design principles 
Modern programming languages for safety 
Extensive use of cryptography 
Conscious of resource control & QoS 
Safe, rapid adaptation to change 



Complexity: RFC Pages ‘82-
’97 
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Draft pages overlaid since 1995 
log(f(pages,year))>log(f(users,year))? 
 



Active Network Model 
Packets can change the behavior of the 

switches “on-the-fly” 
In-band active packets 
Out-of-band active extensions 



Restricting Programs 

Node safe versus network safe 

All 
Programs 

Node 
Safe 
Programs 

Network 
Safe 
Programs 



Observations 

Code is either untrusted or trusted 
If untrusted, mechanisms must defend 

against misuse 
Alternative is to make trusted, e.g., by 

trusted compilation with restrictions 
Untrusted requires heavywight mech. 

Example – OS, e.g.,  Cambridge Xenoserver 



Principles 

Network safety without node safety hard 
Node guarantees can extend to net 
Distributed state hard to model, 

particularly at compilation time 
Cryptography is not security 
Resource management limited to layers 

under control (e.g., bridge for layer 2) 



3. Protection 

What must be protected in a network? 
Bandwidth resources 
Memory resources 
CPU / computational resources 
Static versus dynamic protection 
Location of protection in architecture 



How do we control programs? 

Safety & Security: P.L., O.S. or hybrid? 

O.S. 
Kernel, 
e.g., Linux 

Device  
Driver 

Device 
Driver 

Programming Language 
        Environment 



3.1 Languages / Programming 

ANTS 
ALIEN 
PLAN 
SNAP 
Language Independent Approaches 



ANTS 

Active Network Transport System 
See Weatherall paper in SOSP 99 
ANTS based on a Java platform 
Used for several applications such as 

Active Reliable Multicast (ARM) 
Security Model of Namespace Isolation 
Achieved with MD5 hash of module 



The ALIEN Active Loader 

See Alexander IWAN 99 
Active extensions and packets in CAML 
Namespace isolation via module thinning 
Only privileged portions of the system 

can directly access shared resources 
Digital signatures for remote accesses 

Resembles a capability model 



ALIEN in an Active Element 

Three layer architecture 

active 
code 

Loader 

Core Switchlet 

libraries 

Runtime (Caml) 
OS (Linux) 



saneping Performance 

0

5000

10000

15000

20000

25000

0 200 400 600 800 1000

us
ec

 

trial 

ping times



Overall Breakdown of Costs 

information 
gathering 

10% 

marshaling 
16% 

authentication 
25% 

transmission 
related 

4% 

Caml 
overhead 

20% 

kernel/wire 
26% 



Major Costs 

Kernel/Wire (26%, 3078 µs) 
Kernel time + transmission time 
To avoid 

Reduce size of packet 
Reduce or avoid kernel boundary crossing cost 

Authentication (25%, 2910 µs) 
Mostly cost of performing SHA-1 (4 times) 

Presenter
Presentation Notes
B8



Cryptography is Expensive 

Implemented in C because too slow in 
Caml 

Times to hash 4MB of data 

bytecode native
Caml Int32 86.45s 61.99s
Caml int 36.03s  2.48s
C  0.33s



The take-home lesson: 

Must reduce per-packet crypto costs: 
Active extension amortizes costs 
ANTS caching amortizes costs 
Smaller packets (Dense CISC, a la BBN) 

Or, find another way to avoid crypto in 
the common case…  



Packet Language for Active 
Networks (PLAN) 

 Hicks, Kakkar, Moore, Gunter, Nettles 
Capsule-based approach 
CAML runtime 
 Highly-restricted domain specific 

language (a safe “glue” language, like 
the UNIX shell), extensible via ALIEN 

Active extensions do restricted things 



Safe and Nimble Active Packets 

 
Build on first-generation successes 

Notably, PLAN/PLANet 
Address open issues of 

Resource safety 
Performance 

SNAP adds flexibility over IP without 
sacrificing safety or efficiency 

http://www.cis.upenn.edu/~switchware/SNAP 



SNAP Language Design 

Stack-based bytecode VM 
SNAP instructions 

Simple computation, environment query, 
control flow, packet sends 

Resource safety via language design 
Execute in constant time and space 
All branches go forward 
 



Safety and Security 

Node integrity 
Isolation 
Resource safety 

TTL-like resource bound 
Linear CPU and memory usage 
A priori  guarantees 



Compilation techniques 

SNAP: no backward branches! 
Function inlining 
Loop unrolling 

User provides upper bound 
Generally few iterations anyway 

Code size issues 
Most PLAN programs very simple 
Resource use tied to access bandwidth 



Packet format 

IPv4 destination addr 
IPv4 source addr 

Resource bound Source port 
Entry point Code size 

Heap size Stack size 

Code 

Heap 

Stack 



Example: SNAP ping 
forw  ; move on if not at dest 
bne 5 ; jump 5 instrs if nonzero on top 
push 1 ; 1 means “on return trip” 
getsrc ; get source field 
forwto ; send return packet 
pop  ; pop the 1 for local ping 
demux ; deliver payload 

A B C 
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Example: SNAP ping 
forw  ; move on if not at dest 
bne 5 ; jump 5 instrs if nonzero on top 
push 1 ; 1 means “on return trip” 
getsrc ; get source field 
forwto ; send return packet 
pop  ; pop the 1 for local ping 
demux ; deliver payload 

A B C 

data 



SNAP Contributions 

Provable resource safety 
Linear resource usage 
Guaranteed via language restrictions 

Retains flexibility of previous systems 
Performance comparable to an IP 

software router 



Language Independent 
Approaches 

Proof-carrying code – a major idea 
Program (mobile code) carries with it a proof 

of correctness 
Much easier to verify proof than to perform 

proof 
Code-signing 

Challenge with code signing is trust 
management 



STRONGMAN Architecture 

Policy E.L. 
Policy E.L. 

Policy Compiler 
NW 
Info. 

KeyNote 
Expressions 

Firewall 
Host 

Router 

Global 
Policy 

Local 
Enforce- 
ment 



STRONGMAN 

Penn / AT&T Research 
Logical “meta-KeyNote” 
High-level policy compiles to KeyNote 
Policy-based configuration of groups of 

security endpoints (firewalls, hosts, 
routers, …) 

Multiple policy expression languages 
compile to common KeyNote policy model 



Describing Actions in KeyNote 

<Attribute,Value> Action Environment 
 $filename “/home/stan/foo” 
 $owner  “stan”   
 $hostname “lake.sp.co.us” 

Attribute semantics application-specific 
An Action always associated w/Requestor 



KeyNote Example 

Authorizer: stan’s public key 
Licensees:   wendy’s public key 
Conditions:  $file_owner == “stan” 

 && $filename ~= “/home/stan/[^/]*” 
 -> “true”; 

Signature:  stan’s signature 



3.2 Node Architecture 

A Standard Architecture has been 
defined by DARPA 

There are various places where security 
principles must be applied 

When consider entire node, must take 
NodeOS & hardware into account 

Several NodeOS: Scout, Janos, AMP 
(see Peterson, et al., IEEE JSAC) 
 



“Active Network Architecture” 
Application Application Application 

Execution 
Environment 
(e.g., ALIEN) 

Execution 
Environment 
(e.g., ANTS) 

Node Operating System 
(e.g., Nemesis, Scout, Linux, NT?) 



PLAN 

ALIEN/Caml/OS 

AEGIS Static  
Integrity 
Checks 

Dynamic 
Integrity 
Checks  

Node-Node 
Authentication 

Recovery 

Example: SwitchWare Architecture 

ALIEN 
Library 

PLAN 
Packet 

PLAN 
Packet 

Caml 
Active Code 

Caml 
Active Code 



Resource Controlled Active 
Network Environment (RCANE) 
Manage CPU, Memory and Bandwidth 

Challenge: Modern PL heaps (GC) 
Challenge: Interrupts 
Challenge: CPU/Mem/BW tradeoffs 

Approach 
Nemesis for NodeOS + SwitchWare EE 
See Menage, IWAN 99, Alexander, et al., 

JCN, March 2001. 



RCANE Vertical Architecture: 
Application Application 

Execution 
Environment 

A 

Execution 
Environment 

B 

Node Operating System 
(e.g., Nemesis, Scout, Linux, NT?) 

“A” share 
of machine 

“B” share 
of machine 



3.3 Network Based 

Nodes are interconnected to form the 
network 

Likely to interoperate nodes with 
conventional IP network devices, either 
as overlays or in management roles 

Distributed Resource Control rather 
than purely local, as in programming 
environment or in node 



SANE Security Model 

Only process packets from trusted hosts 



Model->Modules->Actions 

Syntax, Semantics, Node vs. Network 
Example: Securing a Network 

Us Them 

1. System 
    Model 

Checker 

2. Modules 
    loaded into nodes 

3. Resulting in 
    a robust 
    Network 



Mutually Suspicious 
Nodes 

 
Nodes Authenticate 

their Neighbors 
Establish Trust 

Relations with Peers 
(PolicyMaker) 

Use Trust Relations to 
Solve Existing Problems 
(eg. Routing) 

Optimize 
Authentication 

Active 
Network 

A1 

A2 

A3 

A4 B1 

B2 

B3 



Node to Node Authentication 
 

Once at Boot Time, Periodically 
Thereafter (Crypto “heartbeat”) 

Modified Station-to-Station Protocol 
(Well Known and Understood) 

Key Can be Used to Authenticate on a 
Hop-by-Hop Basis, Encrypt Sensitive 
Information 

Make Traffic Analysis Hard 



4. Applications 

Firewalls 
Active Queue Management (AQM) 
FIRE 
Packet Marking 
Hash-Based IP Traceback 



4.1 Firewalls 

Preceded organized A.N. effort 
Response to flaw in Internet scheme 
End-to-end argument results in network 

security dependent on hosts 
Hosts are insecure, ergo, net insecure 
Example: DDoS sources 



Why a firewall is an A.N. 

Consists of filtering rules – see, e.g., the 
Berkeley Packet Filter (BPF) of McCanne and 
Jacobson 

These rules are composed of pattern/action 
pairs – e.g., IP source + destination address 
and port numbers, with actions such as drop, 
pass and log 

The programming is event-driven, in the style 
of PLs such as awk. Safe because limited. 
 



Advanced Firewalls and A.N. 

Firewall technology widely used 
Would like “learning” for rule DB, 

action set 
Example: Intrusion Detection Systems 

(IDS) are string-matchers and event 
loggers 

Connect IDS to firewall policy for 
greater dynamics 



Firewall Management 

Common policies needed at multiple 
firewalls 

One approach is careful manual 
configuration 
Not scalable 
 



4.2 Active Queue Management 

Challenge of edge-provided congestion 
control – all edges must “play nice” 

Evil TCPs, or UDP lead to a problem 
Thus, network-embedded solutions have 

appeared as an attempt to solve these 
problems – called AQM in IP world 

Floyd and Jacobson RED, BLUE 
Stoica Core-Stateless Fair Queuing  

 



Basic idea of AQM 

Packets assigned to queues in node 
When queue lengths hit “high water” 

mark, packets begin to be dropped 
Dropped at random location in queue 
Fairness, as “hogs” will be over-

represented in queue 
Jeffay, et al. suggest tuning tough in 

SIGCOMM 2000 paper 



Piecewise A.N. Node Solution: 
Loadable “Queue Management” 

Discriminates between “flows” 
Separate queue for each current flow 
Queues are serviced WFQ 
Control via RSVP, QoS Broker, etc. 

Transmission Queue 

Arrival Queues 

Weighted 
Fair Queuing 



4.3 FIRE 
Flexible Intra-AS Routing Environment 
Partridge, at al., SIGCOMM 2000 
Link-State Intra-Domain Protocol 
Run-time reprogrammability 

Information advertised 
Routing Algorithms (by traffic class!) 
All done in Java 

Can think of as an Active BGP 
 



4.4 Packet Marking 

Savage, et al. paper in SIGCOMM 2000 
Approach to dealing with Denial of 

Service Attacks 
Basic idea is to (statistically) mark 

packets that go by 
 



Probabilistic Packet Marking 

Routers periodically mark packets with 
their ID 

Only mark if packet not already marked 
Infrequent, since “slow path” 
Prob(mark)*#packets large with DOS 
Can be used to locate DOS source 
Improved by Song, Perrig in Infocom 01 



4.5 Hash-Based IP Traceback 

Snoeren, et al., SIGCOMM 2001 
Identifies originator of IP packet 
Generates audit trails within the 

network 
Routers enhanced with Source Path 

Isolation Engine – SPIE 
SPIEs contain packet digests 



5. Summary 

Security of Active Networks themselves 
Use of AN techniques to secure IP nets 
Use of AN techniques to build more 

secure networks of all types 



Security of Active Networks 

Languages and Node Architectures 
show secure nodes can be built, for 
both active extensions and active 
packets (Alien, PLAN, SNAP, ANTS) 

Cryptography extends many node 
protections to networked uses 

Resources can be managed at both node 
and network levels – RCANE, NodeOS 



Use of AN techniques to 
Secure IP networks 

Firewalls, NATs, more active follow-ons 
Programmable AQM (as with 

programmable BGP in FIRE) 
Packet Marking and IP-traceback 

techniques to locate attackers and 
attacks 

Active Router Control models 



Active Router Control (e.g. FAIN) 

Routers co-located with Active Nodes 

IP 

IP 
IP 

IP 

Active 
Element 

LAN 

Fastpath IP 
routing 

Security Policies and 
Decisions (and New 
Services)  



AN techniques for more secure 
networks of all types 

Begin to construct Internet overlays 
with provable properties such as SNAP 
resource bounds 

Many functions of “non A.N.” devices 
are done in software (often see hacks 
of Cisco IOS in bugtraq) 

Migrate A.N. techniques into devices 
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