
Secure Active
Network

Environment (SANE)

Scott Alexander

Bill Arbaugh

Angelos Keromytis

Jonathan Smith

University of Pennsylvania

“Trust, but Verify”

Old Russian Saying

Network Infrastructures

Shared, so Virtualization Matters
Need Timing, Privacy and Authentication
Focus Must be on Protection of the

Network Elements (What will be
Programmed), in Spite of Improved
Flexibility

Node Security, then Network Security

Security is not Cryptography!

Is your Message “secure” if it Doesn’t
Get There? (e.g., Denial of Service)

Security is Adherence to a Security Policy
Unfortunately, in Many Systems Policy is

Informal, Defined in ad hoc Manner, and
Focused only on Selected Attacks

NB: Attacker may Differ on Selection...

Restricting Programs

Node Safe Versus Network Safe

All
Programs

Node
Safe
Programs

Network
Safe
Programs

How Do We Control
Programs?

Safety & Security: P.L., O.S. or Hybrid?

O.S.
Kernel,
e.g., Linux

Device
Driver

Device
Driver

Programming Language
 Environment

A Language-Oriented Model

Switchlet Language for Users (SL)
Formal Semantics Restrict Programs
(e.g., Packet Filters use regexps)

Wire Language for Communicating (WL)
Formal Semantics Across Boundaries

Infrastructure Language for Virtual
Machine (IL)
Formal Semantics Supported on Metal:

Run-time

Secure Active Network
Environment (SANE)

Again, “Trust, but Verify”!

Static Integrity
Checks (Done
Once)

Dynamic Integrity
Checks (Maybe per-
packet/SwitchLet?)

PLAN

Caml/O.S.

Node-Node
Authentication

AEGIS
Recovery

http://www.cis.upenn.edu/~waa
http://www.cis.upenn.edu/~angelos

Node
Level

Network
Level

Per-module/Per-packet
Integrity Checking

Active Bridging (Scott Alexander)

Linux
Kernel Input

 NIC
Output
 NIC

LAN #1 LAN #2 Frame Frame

Caml
System Loaded

modules

. .

http://oilhead.cis.upenn.edu/~salex

REAL Security: Model to
Actions and NOTHING ELSE!

Syntax, Semantics, Node vs. Network
Example: Securing a Network

Us Them

1. System
 Model

Checker

2. Modules
 loaded into nodes

3. Resulting in
 a robust
 Network

The Node Problem

Every Computer System is
Currently Invoked by an
Untrusted Process- Even
“Secure Systems”.

This Leads to a False Sense of Security
for the Users of those Systems.

Definition

We Define the Guaranteed
Secure Bootstrap of an
Active Network Node in
Two Parts.

1. No Code is Executed Unless Explicitly Trusted or
its Integrity is Verified Prior to Use.

2. When an Integrity Failure Occurs, There Exists a
Method to Recover a Suitable Replacement.

Approach

Integrity and Trust Must be “Grounded”
at the Lowest Possible Point.

Trust Base Case (n)

Extended
Trust Level (n+1)

Layer Crossing
Protected by

Public Key Crypto

Chaining Layered Integrity Checks (CLIC)
Extends Trust Beyond the Base Case.

BIOS 2
Level 1

AEGIS Architecture

BIOS 2 BIOS 2
Expansion

ROMs
Level 2

Boot
Block

Level 3

Active
Network Env. Level 4

BIOS 1 Netcard Level 0

Trusted
Repository

Network

Previous Work

Secure? Prototype?

Yes / no no / yes

no yes

no / no no / yes

no / no ?? / ??

Probably yes

no yes

Yee

RATBAG

Lampson / Birlix

Arnold / Jablon

sun

Bits

Previous research on the
Secure Bootstrap Problem

The Network Problem

Network of Mutually Suspicious Active
Nodes

Nodes Need to Cooperate for the Network
to Function

Network Users Need to Interact with the
NEs in a Controlled Manner

Different from the Current Internet!

Mutually Suspicious
Nodes

Nodes Authenticate

their Neighbors
Establish Trust

Relations with Peers
(PolicyMaker?)

Use Trust Relations to
Solve Existing
Problems (eg.
Routing)

Optimize
Authentication

Active
Network

A1

A2

A3

A4 B1

B2

B3

Node to Node
Authentication

Once at Boot Time, Periodically Thereafter
(Crypto “heartbeat”)

Modified STS Protocol (Well Known and
Understood)

Key Can be Used to Authenticate on a
Hop-by-Hop Basis, Encrypt Sensitive
Information

Make Traffic Analysis Hard

User to Node
Authentication

Users Need to Prove Resource Usage
Rights:
To Install Permanent Services
To have their Packets Identified for Further

Processing
Perform other Privileged Operations

Authentication in a “Telescopic” Manner
(“scout” packets)

Again, use of a Modified STS Protocol

Make Use of
Established Trust

Prove Credentials Once per Administrative
Cloud

Same Authentication Inside that Cloud
Cross-Domain Authentication Acceptance

Subject to Policy (Credential Forwarding,
Session Key Sharing)

We Still Need Language Safety (Accidents
Happen)

Open Problems

Public Key Infrastructure Needed
Malicious Nodes and Byzantine Failures
One Way Authentication

Negotiation too Costly in Some Cases (?)
Credential-Use Prediction ?
Protect Against Replay ?
Do We Need Synchronized Clocks ?

SwitchWare: Accelerating
SECURE Network Evolution!

Active Nets: changing the “tempo” of network
evolution from political to technological with
programmable architecture

Secure Active Network Environment (SANE)
Architecture: Moving from Secure NODES to
Secure NETWORKS

Security by design, not afterthought!

http://www.cis.upenn.edu/~switchware

	Secure Active Network Environment (SANE)
	Network Infrastructures
	Security is not Cryptography!
	Restricting Programs
	How Do We Control Programs?
	A Language-Oriented Model
	Secure Active Network Environment (SANE)
	Per-module/Per-packet Integrity Checking
	REAL Security: Model to Actions and NOTHING ELSE!
	The Node Problem
	Definition
	Approach
	AEGIS Architecture
	Previous Work
	The Network Problem�
	Mutually Suspicious�Nodes�
	Node to Node �Authentication�
	User to Node�Authentication�
	Make Use of�Established Trust�
	Open Problems
	SwitchWare: Accelerating SECURE Network Evolution!

