The Active Network Design Space Mini-conference, Paris, FRANCE May 17th, 2000

Jonathan M. Smith University of Pennsylvania http://www.cis.upenn.edu/~jms

Outline: the Design Space

- Usability *vs*. Flexibility *vs*. Security *vs*. Performance
- There may be unattractive tradeoffs, e.g., Performance and Security may be inversely related! (also Usability?)
- Usability and Flexibility can (mostly) be obtained with a general-purpose language such as Java, Caml or Forth

Active Network Architecture

Example: SwitchWare Architecture

The ALIEN Approach

- Achieved by *restricting* a general computing model
- Realized in ALIEN, an active loader for Caml
 - \rightarrow General computing model
 - \rightarrow Interface to OS
 - \rightarrow Interface to active code
- Only privileged portions of the system can directly access shared resources

Decisions in the Design Space

- Usability *vs*. Flexibility *vs*. Security *vs*. Performance
- A General-Purpose Language gets the first two for free; other two are <u>hard</u>!
- Domain-specific Languages (such as PLAN) may achieve different tradeoffs

The ALIEN Active Loader

D. Scott Alexander CAML runtime **CAML** capsules restricted via module thinning Digitally-signed certificates for remote accesses to resources Will use for detailed case study

ALIEN in an Active Element

Three layer architecture

Implementation of Active Code

Active Extensions \rightarrow Loaded from disk or network (TFTP) \rightarrow We use queues for communication \rightarrow Could use upcalls... + Security? \rightarrow ...or blocking downcalls Active Packets \rightarrow ANEP encapsulated (over UDP or link layer) \rightarrow Can use SANE for security \rightarrow Linker/procedure call for communications

Active Packets in ALIEN

□If ANEP header indicates ALIEN →SANE processing as part of ANEP →Code portion is loaded → func is called with code, data, and func name as arguments

saneping Performance

Overall Breakdown of Costs

Major Costs

 \Box Kernel/Wire (26%, 3078 μ s) \rightarrow Kernel time + transmission time \rightarrow To avoid +Reduce size of packet +Reduce or avoid kernel boundary crossing cost \Box Authentication (25%, 2910 μ s) \rightarrow Mostly cost of performing SHA-1 (4 times)

Cryptography is Expensive

Implemented in C because too slow in Caml

Times to hash 4MB of data

	bytecode	native
Caml Int32	86.45s	61.99s
Caml int	36.03s	2.48s
С		0.335

The take-home lesson:

Must reduce per-packet crypto costs:
→ Active extension amortizes costs
→ ANTS caching amortizes costs
→ Smaller packets (Dense CISC, a la BBN)
Or, find another way to avoid crypto in the common case...

Packet Language for Active Networks (PLAN)

Hicks, Kakkar, Moore, Gunter, Nettles Capsule-based approach CAML runtime ☐ Highly-restricted domain specific language (a safe "glue" language, like the UNIX shell), extensible via ALIEN Active extensions do restricted things

The Programmable Protocol Processing Pipeline (P4)

http://www.cis.upenn.edu/~boosters

The P4 illustrates

A restricted programming environment \rightarrow Field-programmable gate arrays Very high performance; operates at OC-3c line rate with a 19.44Mhz clock Easily reaches to 300-400 Mbps with increases in clock rate and word size Can be integrated with software EE → A high-performance active HW/SW hybrid

Some Performance Tradeoffs

Flexibility of System as demonstrated

Activation potential at various current line rates:

Next Generation: in-Fiber A.N.

Register-Only Media Processor (ROMP)

Acknowledgments:

All Penn work and most other work supported by DARPA ITO. Collaborators: Alexander, Arbaugh, Farber, Feldmeier, Gunter, Hadzic, Hicks, Keromytis, Marcus, McAuley, Menage, Moore, Nettles, Segal and Sincoskie...

Hewlett-Packard, Intel and 3Com