
 Active Networks:
A Tutorial

Spring School, Lenk, CH
March 6-10th, 2000

Jonathan M. Smith
University of Pennsylvania
http://www.cis.upenn.edu/~jms

Tutorial Outline:

Introduction to Active Networks
Security
Secure Active Network Environment
Active Network Encapsulation Protocol
Case Study: ALIEN Active Loader
PLAN, RCANE and STRONGMAN
Status and a 2020 Vision

Tutorial Outline:

Introduction to Active Networks
Security
Secure Active Network Environment
Active Network Encapsulation Protocol
Case Study: ALIEN Active Loader
PLAN, RCANE and STRONGMAN
Status and a 2020 Vision

1. Introduction

Store & Forward versus Store, Compute
& Forward

Passive versus Active Networking
An Example Application - Active

Reliable Multicast (ARM)
The Design Space

“Passive” Networking

Smart hosts on the edges
Passive switches in the center

Active Networking Nodes

Store, COMPUTE and Forward!

Input
Packet

Active Code

Output
Packet

Active Network Model
Packets can change the behavior of the

switches “on-the-fly”
In-band active packets
Out-of-band active extensions

An Example Active Application:
Active Reliable Multicast (ARM)

Reliable Multicast plagued by “ACK
implosion” when an error occurs

Retransmission expensive
In MIT’s ARM, Active Elements are

embedded in the multicast tree (not all
tree nodes need be active for ARM to
work)

Example Application: ARM

Active
Router

1. Duplicate NACKs
2. Best-Effort Multicast
 data Caching
3. Local retransmission

Multicast
Data

NACKs
Local
retransmission

Outline: the Design Space

Usability vs. Flexibility vs. Security vs.
Performance

There may be unattractive tradeoffs,
e.g., Performance and Security may be
inversely related! (also Usability?)

Usability and Flexibility can (mostly) be
obtained with a general-purpose
language such as Java, Caml or Forth

Tutorial Outline:

Introduction to Active Networks
Security
Secure Active Network Environment
Active Network Encapsulation Protocol
Case Study: ALIEN Active Loader
PLAN, RCANE and STRONGMAN
Status and a 2020 Vision

2. Security Challenges

How can we restrict programs?
What are safety and security?
Denial of Service Attacks
Multiplexing Points
Local Versus Global Control
Packet Security

Restricting Programs

Node safe versus network safe

All
Programs

Node
Safe
Programs

Network
Safe
Programs

How do we control programs?

Safety & Security: P.L., O.S. or hybrid?

O.S.
Kernel,
e.g., Linux

Device
Driver

Device
Driver

Programming Language
 Environment

Challenges: Safety & Security

Safety: Accidents; Security: Malice
Specification of goal (@30,000 feet!):
Right Information to
Right Place at
Right Time

Insecurity: Deviation from goal
e.g., information to wrong place

Right information/Right place

Requires identifying information units
Requires identifying places
e.g., locations, personnel, etc.

Requires security association
e.g., per-place password encrypts info.
deny information to other places
cryptographic protocols: good progress

Right Time (the tricky one)

Late information may be useless
Basis of denial of service attacks
Requires identifying real times
Languages have no time semantics
gettimeofday() in C/Unix world
is ML better? (Dannenberg’s Arctic?)

QoS & Security:
Denial of Service
Easy to protect server hosts
Resource domains, interrupt masking,

firewall shielding on host itself
But service is unprotected between

client and server site
This problem must be solved with

network-embedded functionality

Denial of Service attack

Cross traffic in an Internet

TCP
Host

Evil
UDP

TCP
Host

?
?

Need to control multiplexing

E.g., assign L3 bandwidth 66%/33%

L1: 66%
L2: 33%

L1

L3 L2

Active Network Architecture
Application Application Application

Execution
Environment
(e.g., ALIEN)

Execution
Environment
(e.g., ANTS)

Node Operating System
(e.g., Nemesis, Scout, Linux, NT?)

Resource Management, End-to-End

 Resource Management Challenges

EE #1 EE #2
EE #2 EE #1

 NodeOS
Send Buffers

NodeOS
Receive Buffers

ANEP/IP ANEP/IP ANEP/IP

multiplexing

ANEP/IP

Unsolved “gotchas”:
Local versus Global control

Program copies L3 (in) to L1, L2 (out)

L1<-L3;
L2<-L3;

L1

L3 L2

A

A

B

B

C

C

D

D

E

E F G H I J K L M N O P Q R

 Is this “Multicast” Program “safe”?

Can Active Packets trust the EE?

“Reflections on Trusting Trust”
Example of self-replicating compiler virus
Lesson: You are trusting infrastructure!

A.N. concern so far: trust of code
Can the code trust the A.N.?

Goal in an A.N.:
Either operate in untrusted environments
Or establish web of trust

Strategies for paranactive nets

Carry all code with you in a capsule
how do you load your code?

Telescope out trust relationships with
cryptography and identities
need to think about ad-hoc relations

Pre-establish trust relationships and
verify at node

Result: E.E. in known state, but…

Still trust some hardware
Also trust repository for recovery
Need basis, like diplomatic pouch

containing a one-time pad
Applications aware AEGIS executed?
Can applications know that system

integrity has been preserved?

Some (maybe crazy) ideas:

Allow paranactive applications to invoke
AEGIS with themselves as target…
Awful performance, poor multiplexing :-)

Paranactive applications “disarm” gradually
(gradually expose more code and
credentials as environment is checked)

Automated Trust Management (need new
acronym - “third rail” of nets!)

Tutorial Outline:

Introduction to Active Networks
Security
Secure Active Network Environment
Active Network Encapsulation Protocol
Case Study: ALIEN Active Loader
PLAN, RCANE and STRONGMAN
Status and a 2020 Vision

3. The Secure Active Network
Environment (SANE)

Demonstrates active packet programming
Mobile code authentication with cryptography
Guarantees no corrupted component
Allows recovery of failed components
Enables trust relationships between nodes

http://www.cis.upenn.edu/~waa
http://www.cis.upenn.edu/~angelos

SANE Security Model

Only process packets from trusted hosts

PLAN

ALIEN/Caml/OS

AEGIS Static
Integrity
Checks

Dynamic
Integrity
Checks

Node-Node
Authentication

Recovery

Example: SwitchWare Architecture

ALIEN
Library

PLAN
Packet

PLAN
Packet

Caml
Active Code

Caml
Active Code

SANE Architecture

“Trust, but Verify”

PLAN

Caml/O.S.

AEGIS Static Integrity
Checks (Done
Once)

Dynamic Integrity
Checks (Maybe per-
packet?)

Node-Node
Authentication

Recovery

BIOS 2
Level 1

AEGIS Architecture

BIOS 2 BIOS 2
Expansion

ROMs
Level 2

Boot
Block

Level 3

Active
Network Env. Level 4

BIOS 1 Netcard Level 0

Trusted
Repository

Network

Approach

Integrity and Trust Must be
“Grounded” at the Lowest Possible
Point.

Trust Base Case (n)

Extended
Trust Level (n+1)

Layer Crossing
Protected by

Public Key Crypto

Chaining Layered Integrity Checks
(CLIC) Extends Trust Beyond the Base
Case.

Mutually Suspicious
Nodes

Nodes Authenticate

their Neighbors
Establish Trust

Relations with Peers
(PolicyMaker?)

Use Trust Relations
to Solve Existing
Problems (eg.
Routing)

Optimize
Authentication

Active
Network

A1

A2

A3

A4 B1

B2

B3

Node to Node Authentication

Once at Boot Time, Periodically
Thereafter (Crypto “heartbeat”)

Modified Station-to-Station Protocol
(Well Known and Understood)

Key Can be Used to Authenticate on a
Hop-by-Hop Basis, Encrypt Sensitive
Information

Make Traffic Analysis Hard

Tutorial Outline:

Introduction to Active Networks
Security
Secure Active Network Environment
Active Network Encapsulation Protocol
Case Study: ALIEN Active Loader
PLAN, RCANE and STRONGMAN
Status and a 2020 Vision

4. Active Network
Encapsulation Protocol (ANEP)

Why ANEP?
ANEP details
Security features of ANEP

Application 1 Application 3

Execution
Environment
(e.g., ALIEN)

Execution
Environment
(e.g., ANTS)

Node Operating System #1
(e.g., Nemesis, Linux)

Execution
Environment
(e.g., ALIEN)

Execution
Environment
(e.g., ANTS)

Node Operating System #2
(e.g.,Scout, NT)

Application 2 Application 3 Application 1 Application 4

Transmission
Facilities

Internode Interoperation

ANEP demultiplexes to EEs

Well-known UDP/IP Port for ANEP

IP over subnets

UDP Protocol

ANEP
Port

ANTS
PLAN Netscript

Active
 Names

ANEP Header Formaat

Format of ANEP Header:

Version Flags Type ID

ANEP Header Length ANEP Packet Length

Options

Payload

0 8 16 24

.

.

.

.

.
.

Terminology, FYI:

Packet: ANEP Header + Payload
Active Node: Network Element that can

evaluate active packets
TLV: Type/Length/Value triple
Basic Header: First two words (8

octets) of the ANEP Header

ANEP Details: Fields

Version: now 1; change w/ANEP header;
discard if unknown value

Flags: for V1, only MSB used
MSB=0, try to forward w/default
MSB=1, discard if TypeID not recognized

ANEP Header Length: in 32 bit words
includes options; 2 if no options

Details: More fields...

TypeID: evaluation environment for
message; 16 bits; values by ANANA
ANANA is currently Bob Braden
Unrecognized value? Check Flags MSB

ANEP Packet Length: Length of entire
packet in octets (including payloads)

Options length (variable) computed
from Packet and Header length
difference

Options

Zero or more Type/Length/Value (TLV)
constructs

Follow the basic header. Format:

FLG Option Type Option Length

Option Payload (Option Value)

.

.

.

0 2 16 31

Option Fields

Option Type: 14 bits, used to interpret
Option Payload.

Values assigned by ANANA; private
when MSB of FLG is set.

Unrecognized value? LSB of FLG 0,
continue; 1 discard packet. Should log.

Option Length: 16 bits; TLV length in
32 bit words; >= 1.

Option Type Values

Reserved:
1 - Source ID
2 - Destination ID
3 - Integrity Checksum
4 - Non-Negotiated Authentication

Format for Source, Destination, N-N:
Scheme Identifier

Option Payload

.

.

Source Identifier

Uniquely identifies sender
Scheme Identifier is 32 bits; identifies

addressing scheme to interpret the
variable size Option Payload

Reserved:
1 - IPv4 Address (32 bits)
2 - IPv6 Address (128 bits)
3 - 802.3 Address (48 bits) (last two octets 0)

Destination Identifier

Uniquely identifies destination in the
active network

Same payload option format as Source
Identifier

Integrity Checksum

Detect some packet integrity losses
16 bit 1’s-complement of 1’s-

complement sum of the ANEP packet
from the ANEP Version field

Payload zero for computing checksum
Option length field is 2.

Non-Negotiated Authentication

Provides 1-way authentication
No prior negotiation assumed
Option payload: 32 bit authentication

scheme, followed by scheme’s data.
Option length field >2.
Reserved:

1 SPKI self-signed certificate
2 X.509 self-signed certificate

Tutorial Outline:

Introduction to Active Networks
Security
Secure Active Network Environment
Active Network Encapsulation Protocol
Case Study: ALIEN Active Loader
PLAN, RCANE and STRONGMAN
Status and a 2020 Vision

5. Case Study: ALIEN Active
Loader
Programming Language Approach
Protection with “namespace sandbox”
Extend to network with crypto
Performance implications
Not the whole story

Decisions in the Design Space

Usability vs. Flexibility vs. Security vs.
Performance

A General-Purpose Language gets the
first two for free; other two are hard!

Domain-specific Languages (such as
PLAN, Sec. 6 of tutorial) may achieve
different tradeoffs

The ALIEN Approach

Achieved by restricting a general computing
model

Realized in ALIEN, an active loader for Caml
General computing model
Interface to OS
Interface to active code

Only privileged portions of the system can
directly access shared resources

The ALIEN Active Loader

D. Scott Alexander
CAML runtime
CAML capsules restricted via module

thinning
Digitally-signed certificates for remote

accesses to resources
Will use for detailed case study

ALIEN in an Active Element

Three layer architecture

active
code

Loader

Core Switchlet

libraries

Runtime (Caml)
OS (Linux)

Implementation of Active Code

Active Extensions
Loaded from disk or network (TFTP)
We use queues for communication
Could use upcalls...

Security?
…or blocking downcalls

Active Packets
ANEP encapsulated (over UDP or link layer)
Can use SANE for security
Linker/ procedure call for communications

Active Packets in ALIEN

If ANEP header indicates ALIEN
SANE processing as part of ANEP
Code portion is loaded
func is called with code, data, and func name as

arguments

ANEP
header/
SANE
auth

code
portion

link
layer

header

data
portion

func
name

saneping Performance

0

5000

10000

15000

20000

25000

0 200 400 600 800 1000
trial

us
ec

ping times

Overall Breakdown of Costs

marshaling
16%

kernel/wire
26%

information
gathering

10%

authentication
25%

Caml
overhead

20% transmission
related

4%

Major Costs

Kernel/Wire (26%, 3078 µs)
Kernel time + transmission time
To avoid
Reduce size of packet
Reduce or avoid kernel boundary crossing cost

Authentication (25%, 2910 µs)
Mostly cost of performing SHA-1 (4 times)

Presenter
Presentation Notes
B8

Cryptography is Expensive

Implemented in C because too slow in
Caml

Times to hash 4MB of data

bytecode native
Caml Int32 86.45s 61.99s
Caml int 36.03s 2.48s
C 0.33s

The take-home lesson:

Must reduce per-packet crypto costs:
Active extension amortizes costs
ANTS caching amortizes costs
Smaller packets (Dense CISC, a la BBN)

Or, find another way to avoid crypto in
the common case…

Tutorial Outline:

Introduction to Active Networks
Security
Secure Active Network Environment
Active Network Encapsulation Protocol
Case Study: ALIEN Active Loader
PLAN, RCANE and STRONGMAN
Status and a 2020 Vision

6. PLAN, RCANE,
STRONGMAN

PLAN
RCANE
STRONGMAN

Packet Language for Active
Networks (PLAN)

 Hicks, Kakkar, Moore, Gunter, Nettles
Capsule-based approach
CAML runtime
 Highly-restricted domain specific

language (a safe “glue” language, like
the UNIX shell), extensible via ALIEN

Active extensions do restricted things

Resource Controlled Active
Network Element (RCANE)

Manage CPU, Memory and Bandwidth
Challenge: Modern PL heaps (GC)
Challenge: Interrupts
Challenge: CPU/Mem/BW tradeoffs

Approach
Experimental RCANE with Cambridge (UK)

using Nemesis O.S. for NodeOS and
SwitchWare E.E.; NSF-funded at Penn; see
IWAN talk by Paul Menage of Cambridge

RCANE Vertical Architecture:
Application Application

Execution
Environment

A

Execution
Environment

B

Node Operating System
(e.g., Nemesis, Scout, Linux, NT?)

“A” share
of machine

“B” share
of machine

STRONGMAN Architecture

Policy E.L.
Policy E.L.

Policy Compiler
NW
Info.

KeyNote
Expressions

Firewall
Host

Router

Global
Policy

Local
Enforce-
ment

STRONGMAN

Penn / AT&T Research
Logical “meta-KeyNote”
High-level policy compiles to KeyNote
Policy-based configuration of groups of

security endpoints (firewalls, hosts,
routers, …)

Multiple policy expression languages
compile to common KeyNote policy model

Describing Actions in KeyNote

<Attribute,Value> Action Environment
 $filename “/home/stan/foo”
 $owner “stan”
 $hostname “lake.sp.co.us”

Attribute semantics application-specific
An Action always associated w/Requestor

KeyNote Example

Authorizer: stan’s public key
Licensees: wendy’s public key
Conditions: $file_owner == “stan”

 && $filename ~= “/home/stan/[^/]*”
 -> “true”;

Signature: stan’s signature

Tutorial Outline:

Introduction to Active Networks
Security
Secure Active Network Environment
Active Network Encapsulation Protocol
Case Study: ALIEN Active Loader
PLAN, RCANE and STRONGMAN
Status and a 2020 Vision

7. Summary and a 2020 Vision

Myths
Reality
Five years out
Twenty years out - 2020

Three Big Myths

Active Networks will not perform well
Active Networks cannot be secured
Active Networks are an increment on

current thinking

Some Performance Tradeoffs

155 Mb/s

80 Mb/s
100 Mb/s

60 Mb/s

16 Mb/s

Flexibility of System as demonstrated

P4

PLAN
PAN

ALIEN

ANTS

The Programmable Protocol
Processing Pipeline (P4)

F
P
G
A

F
P
G
A

F
P
G
A

F
P
G
A

 http://www.cis.upenn.edu/~boosters

OC3c
ATM

OC3c
ATM

The P4 illustrates

A restricted programming environment
Field-programmable gate arrays

Very high performance; operates at OC-
3c line rate with a 19.44Mhz clock

Easily reaches to 300-400 Mbps with
increases in clock rate and word size

Can be integrated with software EE
A high-performance active HW/SW hybrid

Activation potential at various
commercially deployed rates:

POTS/ISDN

T1

10M Ethernet

OC3

OC192

OC12

Increasing
Traffic Aggregation Increasing SW

Service Deploy-
ment Times

Increasing Preference for SW
Restriction to Control
 Plane

More
Nodes

Take-Home Lesson Number 1:

Access points are 14.4-10Mbps
Peering Points are 1.5Mbps-155Mbps
Almost all are near the slow ends
Active Network Prototypes cover the

entire range!
This is probably the most sensible place

to put value-added services in any case

Security - not entirely there…

ANTS uses MD5 hashes of programs to
identify them at each active node
Namespace isolation
ANTS “virtual machines”

ALIEN Active Loader
Namespace control with “module thinning”
Extend to net with cryptography (at some

performance cost)

But no worse than the Internet…

Secure Active Network Environment
AEGIS Secure Bootstrap (EE integrity)
Node-node authentication

Packet Language for Active Networks
Restricted “safe” base PLAN language
Controlled Access to Active Extensions

And long-term, possibly better!

Resource Controlled Active Net
Environment (RCANE)
EEs/Caml on Nemesis => RCANE
Thwarts Denial-of-Service

Research Underway to Specify Global
Policy and translate to Local Actions
STRONGMAN trust management compiler
Netscript global firewalls

Take-Home Lesson Number 2:

Greater complexity of AN architecture,
and programmability, inspires fear

But it also stimulates designed-in
security

AEGIS and RCANE provide more
broadly applicable results

Programmability: from nodes to nets!

Physics and Networks

Speed of light limits propagation delay
Bandwidth is increasing exponentially,

and therefore bandwidth*delay
How do we control networks?
Round-trip time paced control?

Require network-embedded control!

Take Home Lesson #3,……

This isn’t about improving TCP 0.0001%
This isn’t about selecting header fields
It’s about integrating networks and

computing in a seamless and useful way!

Three Big Truths

Active Networks perform well
Active Networks can be secured
Active Networks will help address the

problems of the future; think big - the
past is already coded!

2005: in-Fiber processing?

OE
+
Fr
am
ing

Fr
am
ing
+

EO

64 bit register

CPU
Fiber
Optic
Input

Fiber
Optic
Output

Register-Only Media Processor (ROMP)

Human I/O architecture

High-bandwidth video input
feeds slow symbol processor (Card, et al)
asymmetric - no fast video out!

Audio input/output (100 kilobits/sec)
Other senses (touch, smell, taste…)
The asymmetry is HUGE (10-1000)
Lots of intermediate filtering

Technology echoes biology...

Newspapers
Many readers, few writers

Television
Video out, remote control in

Web
Video, etc. out, text/clicks in

Coupled to I/O architecture!

Biology and Networks

We can probably handle 50 Mbps input
Is that all we need? No!
Want to find best of 10,000,000 video

streams occurring simultaneously
finding
selecting
focus

Network as Information Appliance!

Optimally

Information flows in audio/video
Information flows out audio (speech

recognition *should* be faster than
keyboarding!)

Information systems get the “best”
(necessary, relevant, etc.) information
to the presentation point (eyes, ears)

The “2020 Vision”

Is (# people)*(video bit rate) all the
bandwidth we will ever need?

NO! There’s a lot going on!
The “vision” is one of information

fusion
The goal is: right information, to right

person, at the right time
Huge challenges in systems design

The basic architecture

Nets and computers improving
exponentially. Humans, well…

Active nodes have “delegates”
select information (watching a million

cameras……)
forward towards you for consumption
your senses extended into the network

Can we do it?

Active nets are getting there
architecture being developed
performance, security, scale all issues
mature in 2-5 years

We need deployable HCI and AI
technologies

Towards the ultimate SPAM filter!

Acknowledgments:

All Penn work and most other work
supported by DARPA ITO.

Collaborators: Alexander, Arbaugh,
Farber, Feldmeier, Gunter, Hadzic,
Hicks, Keromytis, Marcus, McAuley,
Menage, Moore, Nettles, Segal and
Sincoskie…

Hewlett-Packard, Intel and 3Com

	 Active Networks:�A Tutorial�Spring School, Lenk, CH�March 6-10th, 2000�
	Tutorial Outline:
	Tutorial Outline:
	1. Introduction
	�“Passive” Networking
	Active Networking Nodes
	Active Network Model
	An Example Active Application:�Active Reliable Multicast (ARM)
	Example Application: ARM
	Outline: the Design Space
	Tutorial Outline:
	2. Security Challenges
	Restricting Programs
	How do we control programs?
	Challenges: Safety & Security
	Right information/Right place
	Right Time (the tricky one)
	QoS & Security: �Denial of Service
	Denial of Service attack
	Need to control multiplexing
	Active Network Architecture
	Resource Management, End-to-End
	Unsolved “gotchas”:�Local versus Global control
	Can Active Packets trust the EE?
	Strategies for paranactive nets
	Result: E.E. in known state, but…
	Some (maybe crazy) ideas:
	Tutorial Outline:
	3. The Secure Active Network Environment (SANE)
	SANE Security Model
	Slide Number 31
	SANE Architecture
	AEGIS Architecture
	Approach
	Mutually Suspicious�Nodes�
	Node to Node Authentication�
	Tutorial Outline:
	4. Active Network Encapsulation Protocol (ANEP)
	Internode Interoperation
	ANEP demultiplexes to EEs
	ANEP Header Formaat
	Terminology, FYI:
	ANEP Details: Fields
	Details: More fields...
	Options
	Option Fields
	Option Type Values
	Source Identifier
	Destination Identifier
	Integrity Checksum
	Non-Negotiated Authentication
	Tutorial Outline:
	5. Case Study: ALIEN Active Loader
	Decisions in the Design Space
	The ALIEN Approach
	The ALIEN Active Loader
	ALIEN in an Active Element
	Implementation of Active Code
	Active Packets in ALIEN
	saneping Performance
	Overall Breakdown of Costs
	Major Costs
	Cryptography is Expensive
	The take-home lesson:
	Tutorial Outline:
	6. PLAN, RCANE, STRONGMAN
	Packet Language for Active Networks (PLAN)
	Resource Controlled Active Network Element (RCANE)
	RCANE Vertical Architecture:
	STRONGMAN Architecture
	STRONGMAN
	Describing Actions in KeyNote
	KeyNote Example
	Tutorial Outline:
	7. Summary and a 2020 Vision
	Three Big Myths
	Some Performance Tradeoffs
	The Programmable Protocol Processing Pipeline (P4)
	The P4 illustrates
	Activation potential at various commercially deployed rates:
	Take-Home Lesson Number 1:
	Security - not entirely there…
	But no worse than the Internet…
	And long-term, possibly better!
	Take-Home Lesson Number 2:
	Physics and Networks
	Take Home Lesson #3,……
	Three Big Truths
	2005: in-Fiber processing?
	Human I/O architecture
	Technology echoes biology...
	Biology and Networks
	Optimally
	The “2020 Vision”
	The basic architecture
	Can we do it?
	Acknowledgments:

