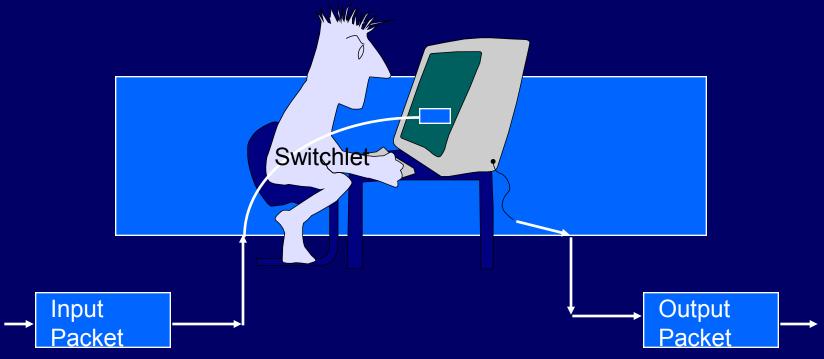

Active Networks: Myths and Measurements

IWAN '99, Berlin, July 2nd, 1999

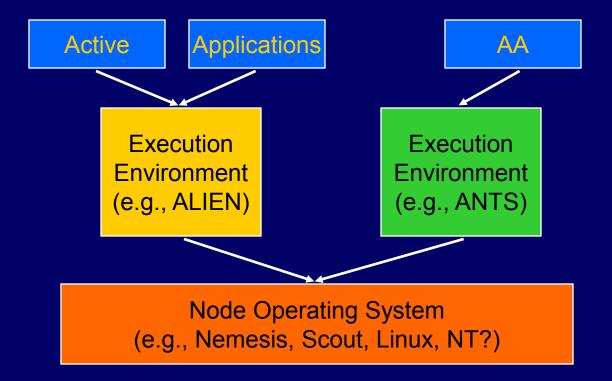
Jonathan M. Smith University of Pennsylvania http://www.cis.upenn.edu/~jms


## IP Routing Infrastructure

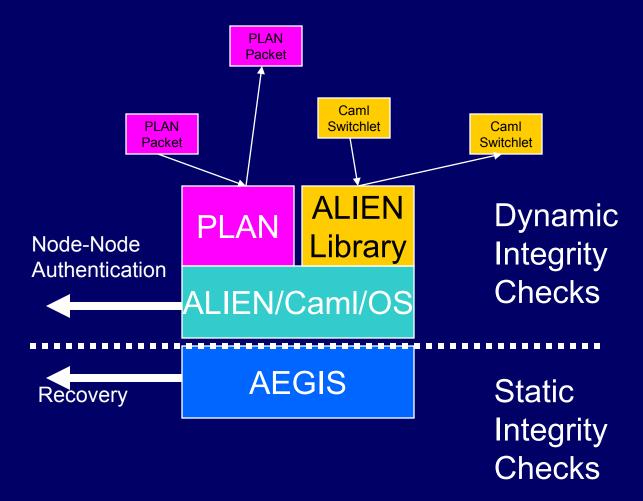
#### **Model:** Store and Forward



## Active Networking Nodes


#### Store, COMPUTE and Forward!




# Three Big Myths

Active Networks will not perform well
Active Networks cannot be secured
Active Networks are an increment on current thinking

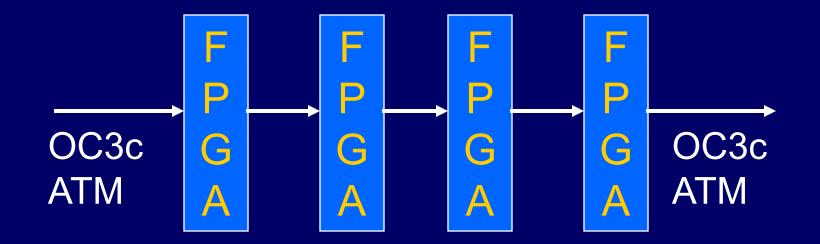
#### Active Network Model



#### Example: SwitchWare Architecture



# The Design Space

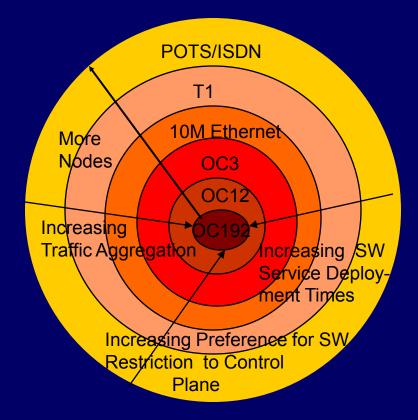

- Usability *vs*. Flexibility *vs*. Security *vs*. Performance
- There may be unattractive tradeoffs, e.g., Performance and Security may be inversely related! (also Usability?)
- Usability and Flexibility can (mostly) be obtained with a general-purpose language such as Java, Caml or Forth

## Some Performance Tradeoffs



Flexibility of System as demonstrated

The Programmable Protocol Processing Pipeline (P4)




#### http://www.cis.upenn.edu/~boosters

## The P4 illustrates

A restricted programming environment - Field-programmable gate arrays Very high performance; operates at OC-3c line rate with a 19.44Mhz clock Easily reaches to 300-400 Mbps with increases in clock rate and word size Can be integrated with software EE - A high-performance active HW/SW hybrid

# Activation potential at various commercially deployed rates:



#### Take-Home Lesson Number 1:

Access points are 14.4-10Mbps Peering Points are 1.5Mbps-155Mbps Almost all are near the slow ends Active Network *Prototypes* cover the entire range! This is probably the most sensible place to put value-added services in any case

#### Security - not entirely there...

ANTS uses MD5 hashes of programs to identify them at each active node **Namespace** isolation DANTS "virtual machines" **ALIEN** Active Loader • Namespace control with "module thinning" Extend to net with cryptography (at some performance cost)

#### But no worse than the Internet...

Secure Active Network Environment
 AEGIS Secure Bootstrap (EE integrity)
 Node-node authentication
 Packet Language for Active Networks
 Restricted "safe" base PLAN language
 Controlled Access to Active Extensions

## And long-term, possibly better!

Resource Controlled Active Net Environment (RCANE) DEEs/Caml on Nemesis => RCANE Thwarts Denial-of-Service Research Underway to Specify Global Policy and translate to Local Actions STRONGMAN trust management compiler • Netscript global firewalls

#### Take-Home Lesson Number 2:

Greater complexity of AN architecture, and programmability, inspires fear But it also stimulates designed-in security **AEGIS** and RCANE provide more broadly applicable results Programmability: from nodes to nets!

## Physics and Networks

Speed of light limits propagation delay
 Bandwidth is increasing exponentially, and therefore bandwidth\*delay
 How do we control networks?
 Round-trip time paced control?
 Require network-embedded control!

# **Biology and Networks**

We can probably handle 50 Mbps input Is that all we need? No! Want to find best of 10,000,000 video streams occurring simultaneously **I** finding **D**selecting focus Network as Information Appliance!

## Take Home Lesson #3,.....

This isn't about improving TCP 0.0001%
This isn't about selecting header fields
It's about integrating networks and computing in a seamless and useful way!

# Three Big Truths

Active Networks perform well
Active Networks can be secured
Active Networks will help address the problems of the future; think big - the past comes for free!

## Acknowledgments:

All Penn work and most other work supported by DARPA ITO. Collaborators: Alexander, Arbaugh, Farber, Feldmeier, Gunter, Hadzic, Hicks, Keromytis, Marcus, McAuley, Menage, Moore, Nettles, Segal and Sincoskie...

Hewlett-Packard, Intel and 3Com