Challenge Problems

“Novel Protocols and Network Configurations” Team
November 19th, 1998

Tom Anderson, University of Washington
Bill Marcus, Bellcore
Jonathan Smith, U. Penn
Yechiam Yemini, Columbia University
Team Approach

- Pick apps that benefit the Internet
 - people care about the problem
 - require programmability in network
 - infect Internet with active net virus... :-)
 - work through issues end-to-end

- Example I: Active Routing (ARC, Detour)
- Example II: Active Service Attack Prevention (ASAP)
Challenge: Interoperability

- Towards PLANTScript
 - Internet -- hook networks together
 - Interactive network -- hook active networks together

- Federated administrative domains
 - No single node OS, API, prog lang Required if system is to scale
 - Security, perf. isolation, local decision making, upgrade path, ease of devel.
Outline

- Background
- Interoperability Issues
- Example Apps: ARC/Detour and ASAP
- Deployment Challenges
ABONE tunnels over Internet

- Hosts
- IP Routers
- Active Network Elements
“Active Network Architecture”

Application -> Execution Environment (e.g., ALIEN)

Application -> Execution Environment (e.g., ANTS)

Node Operating System (e.g., Nemesis, Scout, Linux, NT?)
ANEP demultiplexes to EEs

- Well-known UDP/IP Port for ANEP
Challenge: Scale to 1K Nodes

- Assume a single execution environment standard?
 - No single solution best for all apps
- Assume a single node OS standard?
 - Inflexible, hard to upgrade
- Assume backward compatibility with node OS API?
 - Still need trust boundaries
Interoperability

- Heterogeneous clouds of homogeneity
 - part PLAN, part ANTS, part inactive
 - part Scout, part Nemesis, part SecureXOK

- End to end solution requires:
 - Active border gateways for translation, security domains
 - Communication and resource allocation between execution environments
Example #1: Active Routing

- Internet routing is performance insensitive
 - AS path length, early exit, private peering
 - at best, hand tuned policy

Even so: Internet is black box
- hard to know where the problems are
- no multipathing/load balancing
- poor congestion control for short flows
Opportunities for Active Nets

- At single router
 - program control over policy decisions
 - measurement based
- Within admin domain
 - cooperating routers
- Across domains
 - active BGP?
Active Router Control

IP Router/Forwarders co-located with Active Elements:

IP Router/Forwarding Tables

LAN

Routing Policies and Decisions (and New Services)

Active Element
Implementation Status I

- Early experiment by Bill Marcus
 - Bellcore protocol booster kernel on P.C.
 - Control Cisco 7000 through policy based routing (PBR) interface

- Current work by Osman Ertugay at Penn
 - Java program controlling Cisco 3600 through PBR, running on P.C.
 - Working with 3Com on CB 3500 platform
Implementation Status II

- Project by Columbia & Bay/Nortel
 - Netscript on Accelar
- Programmable gateway:
 - Router, firewall, analyzer/shaper, caching server... (boundary smarts!)
- Investigate SW architecture and HW support
Detour Architecture: Cooperating Active Routers

- Detour nodes at network borders
- Packets routed along tunnels
- Support for non-Detour networks
- Nodes aggregate and transform traffic from sites
- Nodes measure network behavior
ARC becoming possible in COTS
Research/Engineering Issues

- Hierarchy necessary to scale
- Extend with ARC<->ARC protocol
 - ARCs will be organized in Admin. Domains
 - Arbitrary ARCs cannot control routers
 - ARCs resemble active firewalls
- At border gateway, need translation/communication between EE’s
Example #2: Denial of Service

- Easy to protect server hosts
 - Resource domains, interrupt masking, firewall shielding on host itself
- But service is unprotected between client and server site
- This problem must be solved with network-embedded functionality
Denial of Service attack

Cross traffic in an Internet
End-to-End Activations

Resource Management Challenges
Need to control multiplexing

E.g., assign L3 bandwidth 66%/33%
Fair Queuing Code for an A.N.E.

- Discriminates between “flows”
- Separate queue for each current flow
- Queues are serviced “round-robin”
Research/Engineering Issues

- What is the relationship between the EE and the NodeOS?
 - What can A.N. applications request?
 - How does NodeOS mux EEs?
- What is the language used for loading disciplines?
 - Per-EE (PLAN code generates Netscript?)
 - RSVP interpreted by A.N.E.?
Deployment Challenges

- EE interoperability
 - Will we need an EE-interoperability EE?
 - Or will we be limited to a subset of nodes?
- Difficulties with P.L.-based security
- Local Autonomy vs. Global behavior
- Varying capabilities of NodeOS?
- Challenges use ANEP, ABONE, EEs
Results, if it works:

- Every commercial service will need it
- Provides big incentive to Internet services to extend ABONE for us
- But, of course, it *is* programmable...
Interoperability necessary and fun, but not in workplans for many projects.
- Takes lots of time and coordination.
- Requires more staffing and $$

Cautionary: temporary infrastructure often outlives its inventors...