
Boosting Towards Active Nets

Jonathan M. Smith

University of Pennsylvania

(a talk on network evolution....)

Protocol Design (Today)

Begins with problem to be solved,
including assumptions
» e.g., TCP’s “reliable bytestream”, over IP

Optimization:
» Measure
» Identify common case
» Make it fast
» Repeat until satisfied.....

Critique of Methodology

Pessimistic Design Style
» Assume worst-case
» Pare away functions to get “fast-path”

Optimizations Fragile
» Environment Changes (WWW)
» Common Cases Change (delay, loss, ...)
» Things can break BADLY! (try at home :-)

An alternative methodology

Assume things are working well
Detect when they are not (policy)
Add functions (mechanism) to fix
Functions are called “protocol boosters”
An optimistic approach to transparently

achieving high end-to-end performance

Protocol Boosters

Protocol Elements added ‘‘as-
needed’’

Example of “optimistic” design method
Useful to maintain common case

Application

Booster DeBooster

Application

Host A Host B

Network
Element

Boosted Subnet

Examples

 Implemented over IP on FreeBSD
» Encryption Booster
» Compression Booster

FEC Booster at Bellcore
Hardware Support: The P4*

*see http://www.cis.upenn.edu/~boosters/boosters.html

Performance Potential:

Thruput: TCP, TCP/FEC, Hybrid

Bit Error Rate

T
h
r
u
p
u
t

*

*
*
 * *

 * *
 *
 * *

Thus, a question:

Q: What’s the network infrastructure
needed to support this idea & others?

A: A programmable network
infrastructure!

SwitchWare switching

Store, COMPUTE and Forward!

Input
Packet

Switchlet

Output
Packet

‘‘Active’’ Networks

 Accelerate service creation with programmable
network infrastructure

 Balancing flexibility and security
 Ad hoc architectures difficult to trust
 Is this just another O.S. problem?

The SwitchWare Language-Oriented
Model

 Switchlet Language for users (SL)
» formal semantics restrict programs
» (Boosters make *fine* Switchlets :-)

 Wire Language for communicating (WL)
» formal semantics across boundaries

 Infrastructure Language for Virtual Machine (IL)
» formal semantics supported on metal: run-time

Current Software

Active Bridging

Linux
Kernel Input

 NIC
Output
 NIC

LAN #1 LAN #2 Frame Frame

Caml
System Loaded

modules

. .

Lessons from Bridge

16 Mbps vs. 32 Mbps for “C” equivalent
 Incremental Loads:

» Buffered Repeater
» Self-Learning
» Spanning Tree Algs. (DEC & IEEE)
» Automatic STA Transition in <0.1sec

http://oilhead.cis.upenn.edu/~salex

Boosting Towards Active Nets

Trying to change the “tempo” of network
evolution by design/architecture

Protocol Boosters is a design *method*
» Optimistic and as-needed functions
» Consistent with “end-to-end” argument

Active Nets provide ideal infrastructure for
Protocol Booster deployment

http://www.cis.upenn.edu/~switchware
http://www.cis.upenn.edu/~boosters

	Boosting Towards Active Nets
	Protocol Design (Today)
	Critique of Methodology
	An alternative methodology
	Protocol Boosters
	Examples
	Performance Potential:
	Thus, a question:
	SwitchWare switching
	‘‘Active’’ Networks
	The SwitchWare Language-Oriented Model
	Current Software
	Lessons from Bridge
	Boosting Towards Active Nets

