Boosting Towards Active Nets

(a talk on network evolution....)

Jonathan M. Smith

University of Pennsylvania
Protocol Design (Today)

- Begins with problem to be solved, including assumptions
 - e.g., TCP’s “reliable bytestream”, over IP

- Optimization:
 - Measure
 - Identify common case
 - Make it fast
 - Repeat until satisfied…..
Critique of Methodology

- Pessimistic Design Style
 - Assume worst-case
 - Pare away functions to get “fast-path”

- Optimizations Fragile
 - Environment Changes (WWW)
 - Common Cases Change (delay, loss, ...)
 - Things can break BADLY! (try at home :-)

An alternative methodology

- Assume things are working well
- Detect when they are not (policy)
- Add functions (mechanism) to fix
- Functions are called “protocol boosters”
- An optimistic approach to transparently achieving high end-to-end performance
Protocol Boosters

- Protocol Elements added ‘‘as-needed’’
- Example of “optimistic” design method
- Useful to maintain common case
Examples

- Implemented over IP on FreeBSD
 - Encryption Booster
 - Compression Booster
- FEC Booster at Bellcore
- Hardware Support: The P4*

*see http://www.cis.upenn.edu/~boosters/boosters.html
Performance Potential:

- Thruput: TCP, TCP/FEC, Hybrid
Thus, a question:

Q: What’s the network infrastructure needed to support this idea & others?

A: A *programmable* network infrastructure!
SwitchWare switching

- Store, COMPUTE and Forward!
Active Networks

- Accelerate service creation with programmable network infrastructure
- Balancing flexibility and security
- Ad hoc architectures difficult to trust
- Is this just another O.S. problem?
The SwitchWare Language-Oriented Model

- Switchlet Language for users (SL)
 - formal semantics restrict programs
 - (Boosters make *fine* Switchlets :-)"
- Wire Language for communicating (WL)
 - formal semantics across boundaries
- Infrastructure Language for Virtual Machine (IL)
 - formal semantics supported on metal: run-time
Current Software

- Active Bridging

![Diagram showing the connection between Linux Kernel, Input NIC, Output NIC, Caml System, Loaded modules, LAN #1, and LAN #2. Frames are transmitted between NICs and LANs.](image-url)
Lessons from Bridge

- 16 Mbps vs. 32 Mbps for “C” equivalent
- Incremental Loads:
 - Buffered Repeater
 - Self-Learning
 - Spanning Tree Algs. (DEC & IEEE)
 - Automatic STA Transition in <0.1sec
- http://oilhead.cis.upenn.edu/~salex
Boosting Towards Active Nets

- Trying to change the “tempo” of network evolution by design/architecture
- **Protocol Boosters is a design *method***
 - Optimistic and as-needed functions
 - Consistent with “end-to-end” argument
- **Active Nets provide ideal infrastructure for Protocol Booster deployment**

http://www.cis.upenn.edu/~switchware
http://www.cis.upenn.edu/~boosters