
Boosting Towards Active Nets

Jonathan M. Smith

University of Pennsylvania

(a talk on network evolution....)

Protocol Design (Today)

Begins with problem to be solved,
including assumptions
» e.g., TCP’s “reliable bytestream”, over IP

Optimization:
» Measure
» Identify common case
» Make it fast
» Repeat until satisfied.....

Critique of Methodology

Pessimistic Design Style
» Assume worst-case
» Pare away functions to get “fast-path”

Optimizations Fragile
» Environment Changes (WWW)
» Common Cases Change (delay, loss, ...)
» Things can break BADLY! (try at home :-)

An alternative methodology

Assume things are working well
Detect when they are not (policy)
Add functions (mechanism) to fix
Functions are called “protocol boosters”
An optimistic approach to transparently

achieving high end-to-end performance

Protocol Boosters

Protocol Elements added ‘‘as-
needed’’

Example of “optimistic” design method
Useful to maintain common case

Application

Booster DeBooster

Application

Host A Host B

Network
Element

Boosted Subnet

Examples

 Implemented over IP on FreeBSD
» Encryption Booster
» Compression Booster

FEC Booster at Bellcore
Hardware Support: The P4*

*see http://www.cis.upenn.edu/~boosters/boosters.html

Performance Potential:

Thruput: TCP, TCP/FEC, Hybrid

Bit Error Rate

T
h
r
u
p
u
t

*

*
*
 * *

 * *
 *
 * *

Thus, a question:

Q: What’s the network infrastructure
needed to support this idea & others?

A: A programmable network
infrastructure!

SwitchWare switching

Store, COMPUTE and Forward!

Input
Packet

Switchlet

Output
Packet

‘‘Active’’ Networks

 Accelerate service creation with programmable
network infrastructure

 Balancing flexibility and security
 Ad hoc architectures difficult to trust
 Is this just another O.S. problem?

The SwitchWare Language-Oriented
Model

 Switchlet Language for users (SL)
» formal semantics restrict programs
» (Boosters make *fine* Switchlets :-)

 Wire Language for communicating (WL)
» formal semantics across boundaries

 Infrastructure Language for Virtual Machine (IL)
» formal semantics supported on metal: run-time

Current Software

Active Bridging

Linux
Kernel Input

 NIC
Output
 NIC

LAN #1 LAN #2 Frame Frame

Caml
System Loaded

modules

. .

Lessons from Bridge

16 Mbps vs. 32 Mbps for “C” equivalent
 Incremental Loads:

» Buffered Repeater
» Self-Learning
» Spanning Tree Algs. (DEC & IEEE)
» Automatic STA Transition in <0.1sec

http://oilhead.cis.upenn.edu/~salex

Boosting Towards Active Nets

Trying to change the “tempo” of network
evolution by design/architecture

Protocol Boosters is a design *method*
» Optimistic and as-needed functions
» Consistent with “end-to-end” argument

Active Nets provide ideal infrastructure for
Protocol Booster deployment

http://www.cis.upenn.edu/~switchware
http://www.cis.upenn.edu/~boosters

	Boosting Towards Active Nets
	Protocol Design (Today)
	Critique of Methodology
	An alternative methodology
	Protocol Boosters
	Examples
	Performance Potential:
	Thus, a question:
	SwitchWare switching
	‘‘Active’’ Networks
	The SwitchWare Language-Oriented Model
	Current Software
	Lessons from Bridge
	Boosting Towards Active Nets

