
Efficient Packet Monitoring for Network 
Management 

K. G .  Anagnostakis, S. Ioannidis, S. Miltchev, 
M. Greenwald, J. M. Smith 
CIS Department, Univ. of Pennsylvania 
Philadelphia, PA, USA 
(anagnost,sotiris,miltchev,mbgreen,jms)@dsl.cis.upenn.edu ji@research.att.com 

J. Ioannidis 

AT&T Labs - Research 
Florham Park, NJ, USA 

Abstract 
Network monitoring is a vital part of modern network infrastructure management. Ex- 
isting techniques either present a restricted view of network behavior and state, or do 
not efficiently scale to higher network speeds and heavier monitoring workloads. We 
present a novel architecture for programmable packet-level network monitoring that 
addresses these shortcomings. Our approach allows users to customize the monitoring 
function at the lowest possible level of abstraction to suit a wide range of monitoring 
needs: we use operating system mechanisms that result in a programming environment 
providing a high degree of flexibility, retaining fine-grained control over security, and 
minimizing the associated performance overheads. We present an implementation of 
this architecture as well as a set of experimental applications. 

Keywords 
network monitoring, active networking 

1 Introduction 
‘ 

Network monitoring is an increasingly important, yet difficult and demanding task on 
modem network infrastructures. As argued in [14], “the scalability of the stateless 
IP networks has been bought at the expense of observability”, which has in turn led 
to the study of several ways of monitoring networks in order to support control and 
management functions. Most routers offer built-in monitoring functionality, accessible 
using mechanisms such as SNMP [8], W O N  [35] or NePlow [ l l ] .  However, as we 
will describe in Section 2.1, this predefined functionality has not been flexible enough 
for modem network monitoring requirements. 

The desire for more flexibility has led to the rise of non-router-based techniques, 
broadly classified as “active” and “passive” measurements (see, e.g., [28] and [4], re- 
spectively). The degree of flexibility offered by these non-router-based techniques is 

0-7803-7382-0/02/$17.00 02002 JEEE 

mailto:anagnost,sotiris,miltchev,mbgreen,jms)@dsl.cis.upenn.edu
mailto:ji@research.att.com


424 Session Ten Monitoring Techniques 

still limited. Active measurements are restricted by their very nature as they both inter- 
fere with, and also cannot always capture network phenomena. Passive measurement 
systems do not suffer from these limitations, but measurements can only be analyzed 
off-line. The drawback in this case is that there exist applications that require real-time 
analysis, while for a number of other applications, the ability to trade off storage and 
communication for computation results in increased efficiency. Customizing the func- 
tion of a passive monitor for a particular application is possible but requires significant 
effort. To our knowledge, the use of passive measurement systems is still limited. 

In this paper, we explore the use of a dynamically extensible system for passive 
traffic monitoring as a solution to these problems. The FLAME system described here 
attempts to provide an efficient system structure and a fine-grained protection model. 
We rely on a C-like language called Cyclone [12] for allowing safe kernel-level packet 
handling , hereby maximizing efficiency without sacrificing safety or flexibility. Users 
can install modules that perform monitoring in real time. The installation of these 
modules is subject to policy constraints. The proposed system can be deployed ini- 
tially as a local enhancement, e.g., as a passive measurement system or, ideally, as an 
enhanced interface card. Wide-spread deployment also enables applications such as 
the IP Traceback [31, 131 and Pushback [23] mechanisms described in Section 4. The 
implementation and the experimental applications instantiated on this system show that 
this approach adds substantial value to a measurement infrastructure and is a promising 
venue for further investigation. 

The rest of this paper is structured as follows. In Section 2 we elaborate on the 
motivation behind our work. We present the system architecture in Section 3 and a set 
of experimental applications in Section 4. In Section 5 we study the performance of the 
resulting system, showing the improvement over current systems. We present related 
work in Section 6 and we conclude in Section 7. 

2 Motivation 

This work is motivated by three observations. First, as mentioned in Section 1,  the fun- 
damental limitations and unsatisfactory trade-offs of existing techniques for network 
monitoring require investigation of alternatives. Second, standard operating system 
mechanisms that could support a programmable monitoring system with packet-level 
granularity are too heavyweight and intrusive. Developing a custom system poses sev- 
eral interesting design challenges from a systems perspective. Last, we view network 
monitoring as a case for active networking, testing existing arguments and knowledge. 

2.1 Limitations of existing techniques 

We discuss in turn why SNMP-like abstractions, existing Management-by-Delegation 
(MbD) models, and active and passive measurement techniques are inflexible or ineffi- 
cient for modem measurement-based applications. 

The most widely used management mechanisms today are based on SNMP, W O N  
and Netflow. Management functionality is hard-coded into the managed elements and 
follows a standardized information model. The need for standardization often results in 



Eficient Packet Monitoring for Network Management 425 

significant delays; it takes months to years from the development and standardization of 
a protocol to the time the corresponding MIBs can be derived. This is understandable, 
as the required management functionality is often hard to predict without significant 
operational experience. The lack of management hooks hinders the development of 
appropriate management tools as new features are added to the network. The interac- 
tion of ECN [29] with Netflow provides a good example of this: NetFlow only allows 
either per-ToS (which includes the CE bit used by ECN) or per-network accounting 
tables, and ECN affects both. Experimentation with ECN-based accounting and charg- 
ing using Netflow is thus difficult. Another example is measuring the rate of TCP SYN 
packets (for SYN attack detection); unless such a feature was deemed necessary when 
the MIB was designed, there is no way to add this kind of functionality. 

The problem with the existing forms of MbD [15] designs is that they only target 
the overhead and latency of communication between the management system and the 
managed element. The underlying information model remains strictly the information 
exported by SNMP/RMON/Netflow. Therefore, the problems described in the previous 
paragraph also hold for MbD designs. 

Active measurements are easy to implement, but have certain limitations. First, 
these techniques create probe traffic which may interfere with regular traffic in un- 
predictable ways. Also, probe traffic is often treated differently than regular traffic. 
The quality and validity of the information provided by these probes raises further is- 
sues. For example, rare or exceptional phenomena (e.g., drops, delay variations, other 
anomalies) may not be visible through active measurements. 

There are three main problems with passive measurement systems. First, analysis 
of the data has to be performed off-line, after the measurements have been taken. There 
is no way to perform monitoring in real-time, unless there is “login” access to the 
measurement system. This restricts the use of the system to the actual infrastructure 
owner and trusted parties if new real-time functionality is needed. Second, maintaining 
the huge data sets for post-processing is often inefficient. On-the-fly data reduction may 
be more efficient, especially if the reduction has little processing overhead; in Section 
4.3 we present an example module that illustrates the power of this approach. Finally, 
in most passive monitoring systems policy as well as functionality is hard-coded into 
the system. For instance, OC3MON 141 only captures packet headers (IP and TCP) but 
some applications may require access to the payload. 

2.2 Design challenges in programmable packet monitoring 

Previous work context has demonstrated some of the benefits of programmable packet 
monitoring, but has also exposed certain design challenges. In particular, the LAME 
system [3] supports a fair mix of applications at typical network speeds. However, the 
emphasis in LAME on off-the-shelf components dictated the use of commodity operat- 
ing system abstractions and system mechanisms to provide security and fault-isolation. 
These mechanisms introduced significant base and per-application overheads that ren- 
der the architecture unsuitable for higher network speeds. The Windmill system [24] is 
similarly structured and pays a similar cost without providing protection, as protection 
was not an objective in Windmill’s design. Since computation is expensive, especially 
as link speeds continue to grow, it is crucial to minimize waste of resources. Although 



426 Session Ten Monitoring Techniques 

it would be preferable to rely as much as possible on off-the-shelf components, hav- 
ing to examine alternative system mechanisms for the needs of programmable packet 
monitoring appears inevitable. 

2.3 Relationship with active networking 

We study network monitoring as a specific class of in-network functionality that could 
benefit from dynamic extensibility within the broader perspective of active networking. 
In this direction, techniques that are well understood in the active networking context 
apply directly to the design of an extensible monitoring system. For example, fine- 
grained security and resource control models [ 16, 21 can safely extend the application 
range of the system, thus “opening” the infrastructure for third parties to perform mon- 
itoring functions. The trade-offs between flexibility, security and performance have 
been studied extensively in active networks [ 11, and experimentation has shown that 
these functions can be appropriately restricted without excessive design complexity 
and performance cost. 

Note that ad-hoc forms of “active” networking, in the sense of dynamic extensibil- 
ity, have been explored to some extent in the case of active measurements [28] as well 
as passive measurements [24]. In the spirit of minimizing complexity, it is desirable 
to find a unified general solution to accelerating network evolution, as advocated by 
active networking arguments. Network monitoring, along with other functions such 
as routing [27], represent network-side functions that have already stressed the need 
for extensibility. The target system structure should be easy to integrate in extensible 
router designs such as [18, 211. This opens further opportunities as the function of the 
router itself can be adapted to the needs of monitoring, while also removing the burden 
of operating separate infrastructures for forwarding and monitoring. The amount of 
resources that could be made available for monitoring in this scenario is an interesting 
engineering question, however, we do not touch upon these issues in this paper. 

3 Design 

The architecture of FLAME is shown in Figure 1. Modules consist of kernel-level code 
K,, user-level code U,, and a set of credentials C,. Code is written in Cyclone [12] 
and is processed by a trusted compiler upon installation. The kernel-level code takes 
care of time-critical packet processing, while the user-level code provides additional 
functionality at slower time scales and lower priority. This is needed so applications 
can communicate with the user or management system (e.g., using the standard library, 
sockets, etc.). We describe how safe execution of in-kernel code is accomplished in 
Section 3.1. The set of credentials C, is used at compile time to verify that the module 
is allowed by system policy to perform the functions it requests. The dark units in Fig- 
ure 1 before each K,  represent code that is inserted before each module code segment 
for policy checks. These units appropriately restrict access of modules to packets or 
packet fields, provide selective anonymization of fields, and so on. We describe how 
these credentials are used and how policy is specified in Section 3.2. 



Eficient Packet Monitoring for Network Management 

packet 

Figure 1 : FLAME Architecture 

421 

3.1 Safe Execution 

Allowing user code to execute inside the operating system kernel raises a number of 
major design challenges. The system must guard against excessive execution time, 
privileged instructions, exceptions, and random memory references. There has been 
extensive work in the operating system and language communities that addresses the 
above problems [20, 32, 91. FLAME leverages these techniques to satisfy our security 
needs. 

Bounding Execution Time. A simple method for bounding execution time is elimi- 
nating backward jumps. This has the advantage of providing us with an upper bound 
for the execution time: linear in the length of the program. However such a limitation 
makes programming cumbersome. Alternatively, we can execute each installed module 
as a kernel thread and context switch between threads when they exceed their allocated 
time slot. Unfortunately this can prove too heavy weight - we only need sequential 
execution of monitoring functions on incoming packets. We take a different approach 
similar to [17]: we augment the backward jumps with checks of a cycle counter; if the 
module exceeds its allocated execution time we jump to the next module . This adds an 
overhead of 5 assembly instructions for the check and another 6 if the check succeeds, 
to initiate the jump to the next module. 

Exceptions. To handle exceptions caused by the module code executing in the ker- 
nel we modified the trap handler of the operating system to catch possible exceptions 
originating from the loaded code. Instead of causing a system panic we terminate the 
module and continue with the next one. 

Privileged Instructions and Random Memory References. To guard against in- 
structions that arbitrarily access memory locations or try to execute privileged assem- 
bly instructions we use Cyclone [12]. Cyclone is a language for C programmers who 
want to write secure, robust programs. It is a dialect of C designed to be safe: free of 



428 Session Ten Monitoring Techniques 

KeyNote-Version: 2 
Authorizer: NET-MANAGER 
Licensees: TrafficAnalysis 
Conditions: 

(app-domain == “flame” && module == “capture” && 
(IPsrc == 158.130.6.0/24 I 1  IPdst == 158.130.6.0/24)) 

- > ” HEADERS -ONLY ” ; 
Signature: “rsa-md5-hex:fOOf5673” 

Figure 2: Example credential that grants “TrafficAnalysis” the right to capture traffic 
to/from 158.130.6.0. The user is authorized to receive packet headers only. 

crashes, buffer overflows, format string attacks, and so on. All Cyclone programs must 
pass a combination of compile-time, link-time and run-time checks to ensure safety. 

3.2 Policy control 
- 

The network operator controls what packets a module can access, what part of the 
packet a module is allowed to view and in what way, what amount of resources (e.g., 
processing, memory) the module is allowed to consume on the monitoring system, and 
what other functions (e.g., socket access) the module is allowed to perform. 

We have chosen a Trust Management [6] approach to mobile code security. Trust 
Management is a novel approach to solving the generalized authorization and security 
policy problem. Entities in a trust-management system (called “principals”) are iden- 
tified by public keys, and may generate signed policy statements (which are similar in 
form to public-key certificates) that further delegate and refine the authorization they 
hold. This results in an inherently decentralized policy system: the system enforcing 
the policy need only consider the relevant policies and delegation credentials, which the 
user must provide. The KeyNote [5] implementation is used as our trust management 
system. An example KeyNote credential is shown in Figure 2.  In the current FLAME 
design, we perform policy compliance checks while loading the incoming object code. 

KeyNote provides a simple notation for specifying both local policies and creden- 
tials. Applications communicate with a “KeyNote evaluator” that interprets KeyNote 
assertions and returns results to applications. A KeyNote evaluator accepts as input a 
set of local policy and credential assertions, and a set of attributes, called an “action 
environment,‘’ that describes a proposed trusted action associated with a set of public 
keys (the requesting principals). The KeyNote evaluator determines whether proposed 
actions are consistent with local policy by applying the assertion predicates to the ac- 
tion environment. In our system, we use the action environment as the place-holder of 
component-specific information (such as language constructs, resource bounds, etc.) 
and environment variables (such as time of day, node name, etc.) that are important to 
the policy management function. 



Eficient Packet Monitoring for Network Munagement 429 

4.1 IP Traceback 

The current Internet architecture offers little protection against ill-behaved.traffic. In re- 
cent years Distributed Denial of Service (DDoS) attacks have increased, which has led 
to the study of appropriate “traceback” mechanisms. A traceback mechanism detects 
the attack source(s), despite the fact that IP source addresses may be spoofed by the at- 
tacker, and responds by confining or blocking traffic from the attacking sites. FLAME 
allows an implementation of IP Traceback [31,23, 341 without requiring modification 
of router functionality to support confinement or traffic blocking. 

We implement Traceback on FLAME by simply monitoring traffic and recording 
the upstream router for each packet. In this particular case, sampling techniques are 
applicable for reducing the cost of monitoring. We use out-of-band communication to 
recursively trigger traceback on neighboring routers, to find the source of the attacks. 
Once the attackers have been traced, router control commands are initiated from the 
monitor to an appropriate management interface to block or otherwise confine the at- 
tacking traffic. Although in our own implementation we use the ALTQ [lo] QoS API 
for blocking the attacking sites, in the general case this interface is not necessarily 
coupled with the router itself. 

The key benefit of using the FLAME approach in implementing IP packet traceback 
and traffic rate limiting is the ability to adapt depending on the type of ill-behaved 
traffic. For example, FLAME gives users the flexibility of dynamically deploying the 
appropriate module to counter a possible attack. As new attacks are being invented it 
is easy to develop and deploy mechanisms to counter them. 

4.2 Worm detection 

Recently, the Internet has observed a wave of “worm” attacks [26] although the concept 
and techniques have generally existed since the early description in [7]. A worm com- 
promises a system such as a Web server by exploiting system security vulnerabilities 
and once a system has been compromised the worm attempts to replicate by “infecting” 
other hosts. The “Code Red” worm and its variants infected over 300 000 servers in 

The worm could be locally detected and prevented if the packet monitor could ob- 
tain access to the TCP packet content. Unfortunately, most known packet monitors 
only record the IP and TCP header and not the packet payload. In FLAME, we imple- 
mented a module to scan packets for the Worm signature. If this signature is matched, 
the source and destination IP addresses are recorded. The module also has the option 
of blocking traffic from the attacking as well as the attacked site. The ALTQ QoS API 
is used for this purpose. 

4.3 Traffic Analysis 

July-August 2001. 

While originally a tool for research, traffic analysis is now needed for management 
functions such as traffic engineering. As discussed in Section 2, both active and passive 
measurement systems have certain drawbacks. 



430 Session Ten Monitoring Techniques 

We have built a simple traffic analysis module to demonstrate the ease of imple- 
mentation on FLAME. It also demonstrates how our per-packet monitoring is capable 
of safely maintaining state across multiple packets. The purpose of the module is to 
measure the existence of “packet trains”. A packet train can be loosely defined as a set 
of consecutive packets belonging to the same “flow”. This is typical, for instance, for 
TCP traffic, which in its slow-start phase injects two packets for each acknowledge- 
ment received. Note that this kind of information is not available through the standard 
network management mechanisms. A typical passive monitoring system would require 
communication of all traffic to the analysis host. Our implementation is trivial to im- 
plement and adds minimal overhead to the monitoring system. The module consists of 
about 40 lines of code, costs about 100 cycles per packet and results in less than 400 
bytes of measurement data. Other functions, such as extracting statistics on TCP win- 
dow sizes or analyzing traffic burstiness, are similarly easy to build. To our knowledge, 
such flexibility is not provided by existing systems. 

4.4 ECN-based Charging 

It is important to obtain network usage statistics per accountable entity when managing 
an operational network. These statistics often form the basis for charging users for net- 
work usage. Today, volume-based charging schemes rely on NetFlow or SNMP-type 
accounting for calculating the cost of service, usually in terms of volume per network 
prefix. Recently, more dynamic pricing algorithms have been studied, especially with 
regard to providing differentiated services or controlling congestion. Recent proposals 
for charging (such as the approach described in [22]) are based on the ECN [29] mech- 
anism. When the network becomes congested, routers mark packets with a probability 
depending on the level of congestion. Marked packets are charged at an elevated rate, 
so resources consumed during periods of congestion are more expensive. This scheme 
provides incentive for users to shift their use of network resources to periods of reduced 
congestion. 

To support ECN-based charges, we index accounting information by network pre- 
fix as well as by marked vs. non-marked packets. As mentioned in Section 2 this is not 
supported by any of the existing router accounting mechanisms: NetFlow allows either 
per-ToS or per-AS or per-network accounting tables. The FLAME implementation is 
fairly simple. The kernel-level module looks up the appropriate entry in the account- 
ing hashtable, while user-level code flushes the tables to the user application on time- 
and/or memory thresholds. 

5 Experimental evaluation 

In this section, we describe experiments with the FLAME implementation. The pur- 
pose of the experiments is two-fold. First, we measure the monitoring capacity of 
the system compared to LAME, and attempt to identify parameters that affect system 
performance. Second, we measure the cost of the different modules that we run on 
the system. The test platform consists of two 1 GHz Pentium I11 PCs with 256 MB 
SDRAM, and 1. Gbit/s Ethernet interfaces (NetGear GA620 32-bit PCI cards with the 



Eficient Packet Monitoring for Network Management 43 1 

FUME-8 modules 

LAME-2 modules 
LAME-8 modules 

10000 

m 1000 
n 

% U) 100 
- 

E 10 

1 
10k 20k 30k 40k 50k 60k 70k 10 100 

packets per second Workload between backward jumps (in cycles) 

Figure 3: Monitoring capacity of FLAME vs. Figure 4: The cost of patching backward 
LAME for different traffic rates jumps 

Alteon chipset). One PC is used as the traffic generator and the other one runs the 
FLAME prototype. For experiments whose results depend on the actual traffic content 
(specifically, measurements on the packet train module and ECN accounting) we used 
the auckland-2 traffic trace from NLANR. In all other cases, we used a modified 
version of t tcp whose sending rate is controlled through the command line. 

Figure 5 presents the monitoring capacity of FLAME compared with LAME for 
different traffic rates. We define monitoring capacity as the maximum number of pro- 
cessing cycles that the system provides to modules without experiencing packet loss 
(e.g., overflowing the receive queue). This is measured using a “null” module whose 
function is to simply consume processing cycles in afor loop. To infer the monitoring 
capacity, we increase the number of cycles that this module consumes, until the packet 
loss rate becomes non-zero. The results show that FLAME consistently outperforms 
LAME, imposing a significantly smaller system overhead. The top line represents the 
maximum number of cycles available for the specific processor for each packet at a 
given traffic rate. These results also confirm that FLAME scales well with increasing 
number of applications. This is of particular importance as in practice the system may 
have to accommodate many small monitoring modules and/or few large ones (in terms 
of processing needs). 

Table 1 summarizes the cost per individual module for FLAME and LAME. The 
cost of the “null” module illustrates the per-module overhead ; this is a major overhead 
factor in LAME which is minimized in FLAME. Additionally, it is shown that, for some 
applications, the cost of each module can be higher in FLAME than in LAME. This 
is natural, as FLAME moves protection inside or around the module; hereby the fixed 
base- and per-module costs are traded for more efficient case-specific overheads. In 
other cases, such as the ”dump-to-disk” (DDUMP) example, the kernel-level structure 
of FLAME provides further performance benefits. 

In Section 3.1 we described our approach for guaranteeing bounded execution time. 
Figure 5 presents the evaluation of this approach. We sequentially execute ten modules 
with and without our backward jumps patch. Furthermore, we simulate a workload 



432 Session Ten Monitoring Techniques 

Normalized Execution Times 
1*07 

[ Task FLAME 1 

Table 1 : Cost breakdown per-application in 
cycles per packet (cpp). Cycle counts re- 

........ 

........ 

........ 

60 

4 0  

2 0  

Unsafe 

........ 

........ 

LAME 

ported are in addition to the base overhead Figure 5: LAME, Cyclone and FLAME 
reported in NULL. overheads for the packet train module 

inside the modules which we gradually increase to monitor the system behavior. We 
notice only a slight increase in execution time, which stays constant across a wide range 
of workloads. 

To investigate the overheads imposed by using the Cyclone language, we compiled 
and executed the packet train module using C (Unsafe) and Cyclone (FLAME). Fig- 
ure 5 presents the normalized overheads. Cyclone has an additional 19% overhead 
over the unsafe case, due to the checks that are necessary for type safety. It is, at this 
point, unclear whether a typical workload would require this amount of overhead. A 
detailed study of applications on this platform is therefore needed to correctly estimate 
the average system overhead. Note however that efficient implementation and efficient 
compilation techniques are key to reducing this overhead. For instance, using types 
rather than arrays (whose bounds have to be checked) on accessing the packet data 
and techniques such as loop unrolling can significantly reduce run-time costs. In the 
LAME approach, the system imposes a de-facto fixed cost for the system as a whole as 
well as per-module which cannot be similarly reduced. 

6 Related Work 

Numerous techniques have been developed for flexible network monitoring. The 
first generation of a tools such as tcpdump were based on the Berkeley Packet Fil- 
ter [25] (BPF). The Packet Filter provides operating system functionality for user-level 
traffic monitoring. Users define filters in a “filter language” and pass them to the sys- 
tem, to execute on a “filter machine” inside the kernel. The filters specify which packets 
the user is interested in. These packets are then passed to the user-level application for 
processing. BPF-based tools were suitable for shared media networks such as Ethernet 
and FDDI, however, with switched networks now dominant this method is no longer 
useful for traffic monitoring. 

OC3MON [4J is a dedicated host-based monitor for snooping on 155 Mbit/s OC3 
ATM links. The host is attached to the link using an optical splitter so that the moni- 
toring function does not interfere with regular service. The host monitors packets and 



Eficient Packet Monitoring for Network Management 433 

records the captured headers in files for post-processing. No real-time functionality for 
packet processing is considered in the original design. 

LAME 131 shares many architectural features with FLAME - dynamically load- 
ing user-provided modules, a Trust Management [6] approach to security - but the 
emphasis in LAME on off-the-shelf components introduced significant overhead that 
rendered the architecture unsuitable for high performance applications. Windmill [24] 
is an extensible network probe environment which allows loading of “experiments” on 
the probe, with the purpose of analyzing protocol performance. As discussed earlier 
in this paper, Windmill does not provide safety and does not efficiently scale to higher 
network speeds or application workloads. 

The NIMI project [28] provides a platform for large-scale Internet measurement 
using Java- and Python-based modules. NIMI only allows active measurements, while 
the security policy and resource control issues are addressed using standard ACL-like 
schemes. 

In the active networking arena, Smart Packets [33] and ABLE [30] provide pro- 
grammable platforms for network management applications, following the MbD prin- 
ciples. ABLE allows applications to poll SNMP interfaces from inside the network, 
while Smart Packets operate on a management interface at the language level. In both 
cases, the management information and control settings are pre-defined subsets of the 
managed element state. 

K A M E  installs modules in the monitoring system, close to the information source. 
This is similar in principle to Management-by-Delegation (MbD) models [ 151. The key 
difference lies in the level of abstraction: we argue for a packet-level traffic measure- 
ment approach instead of relying on the already abstracted SNMP-based metrics. 

7 Summary and concluding remarks 

We have described an architecture for a programmable packet monitoring system: we 
provide a mechanism for loading code in the system kernel; we guarantee safety by 
using a type-safe language and run-time checks; finally, we use a Trust Management 
system for fine-grained policy control. 

We observe that the field of network monitoring provides an excellent proving 
ground for programmable infrastructure systems because of the continuously evolv- 
ing and highly diverse nature of the monitoring functions that users need to embed in 
the network infrastructure. These characteristics make it hard for designers and users 
to predict and agree on a set of functions that can satisfy the long-term needs of mon- 
itoring applications. In the design of the FLAME system, we examined the trade-offs 
between safety, performance and flexibility and we believe that FLAME achieves a 
good balance, as shown in Figure 6. The structure of FLAME follows typical design 
patterns for active-network prototypes while incorporating crucial system-level opti- 
mizations for high performance. 

Although open questions in the software structure of our system remain, we also 
expect to investigate programmable packet monitoring systems that use hardware sup- 
port. We see tremendous potential in the use of network processors such as the Intel 
IXP 1200 [19]. Finally, we would like to study other distributed designs. Since the 



434 

System 
pre-programmed 
Windmill 

Session Ten Monitoring Techniques 

Flexibility Safety Performance 
Low High Low to Medium 

Medium Medium Low 
LAME 
FLAME 

High High Low 
High High High 

Figure 6: Comparison of network monitoring systems 

application workload will consist of several independent modules, there is a natural de- 
composition into independent, concurrent components. These can be run, in parallel, 
on different processors. We anticipate that our approach can thereby be extended to 
higher network speeds and more intensive workloads. 

Acknowledgements 

This work was supported by the DoD University Research Initiative (URI) program 
administered by the Office of Naval Research under Grant N00014-01-1-0795, and 
DARPA under Contracts F39502-99-1-0512-MOD PO001 and N66001-96-C-852. The 
ipanon code was kindly provided by Joerg Micheel. We would like to thank M. 
Hicks, J. Komblum, J. Moore, E. Markatos and H. Bos for valuable comments and 
suggestions throughout the course of this work. 

References 

[l] D. S. Alexander, P. B. Menage, W. A. Arbaugh, A. D. Keromytis, K. Anagnos- 
takis, and J. M. Smith. The price of safety in an active network. IEEE/KICS 
Joumal of Communications and Networks (JCN), March 2001. 

[2] K. G. Anagnostakis, M. W. Hicks, S. Ioannidis, A. D. Keromytis, and J. M. Smith. 
Scalable resource control in active networks. In Proceedings of the 2nd Intema- 
tional Working Conference on Active Networks (TWAN), October 2000. 

[3] K. G. Anagnostakis, S. Ioannidis, S. Miltchev, and J. M. Smith. Practical network 
applications on a lightweight active management environment. In Proceedings of 
the 3rd Intemational Working Conference on Active Networks (TWAN), October 
2001. 

[4] J. Apisdorf, k claffy, K. Thompson, and R. Wilder. OC3MON: Flexible, afford- 
able, high performance statistics collection. In Proceedings of the 1996 LISA X 
Conference, 1996. 

[5] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis. The Keynote trust- 
management system version 2. RFC 2704, http://www.rfc-editozorg/, September 
1999. 

http://www.rfc-editozorg


Eficient Packet Monitoring for Network Management 435 

[6] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In Pro- 
ceedings of the 17th Symposium on Security and Privacy, pages 164-173, 1996. 

[7] J. Brunner. The Shockwave Rider. Del Rey Books, Canada, 1975. 

[8] J. D. Case, M. Fedor, M. L. Schoffstall, and C. Davin. Simple network mange- 
ment protocol (SNMP). RFC l 157/STD00 15, http://www. &-editor.org/, May 
1990. 

[9] J. Chase, H. Levy, M. Baker-Harvey, and E. Lazowska. Opal: A single address 
space system for 64-bit architectures. In Proceedings of the Fourth Workshop on 
Workstation Operating Systems, pages 80-85, 1993. 

[lo] K. Cho. A framework for alternate queueing: Towards traffic management by 
PC-UNIX based routers. In Proceedings of USENIX 1998 Annual Technical Con- 
ference, June 1998. 

[ 111 Cisco Corporation. Netflow services and applications. http://www.cisco.com/, 
2000. 

[ 121 Cyclone user’s manual. Technical Report 2001-1855, Department of 
Computer Science, Come11 University, Nov. 2001. Current version at 
http://www.cs.comell.edu/projects/cyclone/. 

[13] D. Dean, M. Franklin, and A. Stubblefield. An algebraic approach to ip trace- 
back,. In Proceedings of NDSS ’01, February 2001. 

[14] N. Duffield and M. Grossglauser. Trajectory sampling for direct traffic observa- 
tion. In Proceedings of the ACM SIGCOMM’OO Conference. August 2000. 

[ 151 G. Goldszmidt and Y. Yemini. Distributed management by delegation. In Pro- 
ceedings of the 15th Intemational Conference on Distributed Computing Systems 
(ICDCS), pages 333-340,1995. 

[16] M. Hicks and A. D. Keromytis. A secure PLAN. In Zntemational Working Con- 
ference on Active Networks (NAN), 1999. 

[17] M. Hicks, J. T. Moore, and S. Nettles. Compiling PLAN to SNAP. In Proceedings 
of the 3rd International Working Conference on Active Networks ( N A N ) ,  October 
2001. 

[ 181 ICIR. XORP: An extensible open router platform. http://www.xorp.org/, January 
200 1. 

[ 191 Intel Corporation. Intel IXP1200 network processor. 
http://developer.intel.com/ixa/. 

[20] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang. Cyclone: A 
safe dialect of C. In Proceedings of USENIX 2002 Annual Technical Conference, 
June 2002. 

http://www
http://editor.org
http://www.cisco.com
http://www.cs.comell.edu/projects/cyclone
http://www.xorp.org
http://developer.intel.com/ixa


436 Session Ten Monitoring Techniques 

[21] S. Karlin and L. Peterson. VERA: An extensible router architecture. In Proceed- 
ings of IEEE OPENARCH 2001, pages 3-14, April 2001. 

[22] K. Laevens, P. Key, and D. McAuley. An ECN-based end-to-end congestion- 
control framework: experiments and evaluation. Technical report, Microsoft Re- 
search, TR MSR-TR-2000-104, October 2000. 

[23] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and S. Shenker. 
Controlling high bandwidth aggregates in the network (extended version). 
http://wwwaciri.org/pushbackI, July 200 1. 

[24] G. R. Malan and E Jahanian. An extensible probe architecture for network pro- 
tocol performance measurement. In ACM SIGCOMM’98, 1998. 

[25] S. McCanne and V. Jacobson. The BSD packet filter: A new architecture for user- 
level packet capture. In Proceedings of the Winter 1993 USENIX Conference, 
pages 259-270, January 1993. 

[26] D. Moore. The spread of the code-red worm (CRv2). In 
http://www. caida. org/analysis/securiq/code-re&. August 200 1. 

[27] C. Partridge, A. Snoeren, T. Strayer, B. Schwartz, M. Condell, and I. Castineyra. 
FIRE: Flexible intra-AS routing environment. In Proceedings of the ACM SIC- 
COMM’OO Conference, pages 191-203. August 2000. 

[28] V. Paxson, J. Mahdavi, A. Adams, and M. Mathis. An architecture for large-scale 
internet measurement. IEEE Communications Magazine, 38(8):48-54, August 
1998. 

[29] K. Ramakrishnan and S. Floyd. A proposal to add explicit congestion notification 

[30] D. Raz and Y. Shavitt. An active network approach for efficient network man- 
agement. In Proceedings of the 1st International Working Conference on Active 
Networks (IWAN), pages 220 -23 1,1999. 

(ECN) to IP. RFC 2481, http:/!www.&-editoKorg/, January 1999. 

[31] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical network support 
for IP traceback. In ACM SIGCOMM, August 2000. 

[32] F. B. Schneider, G. Morrisett, and R. Harper. A language-based approach to 
security. Informatics: 10 Years Back, 10 YearsAhead, pages 86-101,2000. 

[33] B. Schwartz, A. Jackson, T. Strayer, W. Zhou, R. Rockwell, and C .  Partridge. 
Smart packets: Applying active networks to network management. ACM Trans- 
actions on Computer Systems, 18( 1):67-88, February 2000. 

[34] V. C. Van. A defense against address spoofing using active networks. Bachelor’s 
Thesis, MIT, 1997. 

[35] S. Waldbusser. Remote network monitoring management information base. 
WC28 19/STDOO59, http://www. rjGc-editoxorg/, May 2000. 

http://wwwaciri.org/pushbackI
http://www
http:/!www.&-editoKorg
http://www

